Defining Airstrips and Taxiways

Version 2.0

By Marksman – email Marksman920@hotmail.com
So you’ve finished your island, and have an airstrip on it. How to get it to work? You have to edit the config.cpp for it – don’t worry though its dead easy, no programming experience needed.

First you need a config.cpp file for your island. Either edit a sample one from somewhere (OFPEC forums is a good place to look www.ofpec.com) or you can use my config writing program ;)

http://downloads.come2store.com/Marksman920/Wrp%20Edit%20Config%20tool.zip
Next check your island works ingame.

Defining the airfield

To get the OFP to recognise you have an airfield, you have to define it, giving it details very similar to waypoints

You need:

· A point at one end of your runway where the AI will aim for when landing.

E.g. if you want planes touching down at the South end of your airport, and taking off at the North end, put this point at the Southern end.

· Waypoints defining where the planes should go when taxiing off of the runway after landing.

· Waypoints defining where the plane should go when taxiing onto the runway, ready to take off

The official config.cpp used 13 waypoints. One for the ‘touch down’ point and 6 for each of the taxiing groups of waypoints. They also used a common waypoint for the end of the taxiing off the runway group and the start of the taxiing off group, although when I’ve tested it without this shared waypoint it still seems to work.

One important point: Planes in OFP go in straight lines; so to get the planes to turn corners, use multiple waypoints. For the official airstrips, BIS used the layout below:

[image: image1.wmf]Landing end of runway, point planes aim for when landing

Taxiing in waypoints

Shared waypoint

Taxiing out waypoints

Landing

and

taking off

in this

direction.

Stages to defining the airstrip:

1. Open your island, and decide how and where you want planes to go

2. Find the co – ordinates of these locations

3. Find the direction you want planes landing and taking off in

4. Put locations into the config.cpp

5. Test the island, and fine – tune your waypoints

Stage 1

You don’t have to have looping waypoints like the official one has above; instead you could have planes going to a hanger etc.

A neat trick would be to have planes taxi to near a row of hangers, then use a trigger in the mission editor to detect when planes have reached the hangers. A script could then be run to get the pilot to jump out, or to get the plane to trundle into a random hanger or go and refuel etc…. you get the idea ;)

Stage 2

You need to find the co – ordinates of all the points.

· To do this, save a mission in the editor,

· Copy ‘pos.sqs’ from this zip file into the mission folder.

· Then, back in the editor, create a jeep or similar, with the player as the driver.

· In the jeep’s ‘Init’ field type []exec “Pos.sqs”

· Preview the mission

If the script is running properly, you should get a hint box in the top left corner that contains the current co-ordinates and updates every 2 seconds. If not redo the steps above.

Drive around the airstrip, and note down the co-ordinates of the waypoints you decided on in Stage 1.

Stage 3

You now need to find the direction of the runway, from the point where planes will aim at when landing.

· To do this, save a mission in the editor,

· Copy ‘dir.sqs’ from this zip file into the mission folder.

· Then, back in the editor, create a jeep or similar, with the player as the driver.

· In the jeep’s ‘Init’ field type [this]exec “dir.sqs”

· Preview the mission

If the script is running properly, you should get a hint box in the top left corner that contains the current direction and updates every 2 seconds. If not redo the steps above.

Drive to the ‘landing point’, and line up the jeep with thee airstrip, in the direction of landing and taking off. Note down this direction.

Stage 4

Open the config.cpp file for your island in notepad or a similar text editor. You should see something similar to this:

class CfgPatches

{

class MyAddonName

{

units[] = {};

weapons[] = {};

worlds[] = {"MyIslandName"};

requiredVersion = 1.30;

};

…….

Scroll down to find the lines:

ilsPosition[]={};

ilsDirection[]={};

ilsTaxiIn[]={};

ilsTaxiOff[]={};

It doesn’t matter if they have values inside the { }. Each of these is an array, which can take co – ordinates.

ilsPosition[]

This is the array that holds the co – ordinates of the point the AI will aim for when coming in to land. To put your co – ordinates in do the following:

ilsPosition[]={X co – ordinate value, Y co-ordinate value};

e.g. the one for Everon is:

ilsPosition[]={4772,10923};

Remember the comma between the two co – ordinates.

ilsDirection[]

(a big thanks to Dinger, who figured out what the numbers in ilsDirection stand for, and MadAussie who made the island used for testing)

This holds the direction that the airstrip runs in from the co – ordinates above.

If your airstrip only runs in the North, South, East or West directions, it’s dead easy. If its runs in any other direction it’s a bit trickier.

· North:

[image: image2.wmf]ilsPosition

Direction

of landing

Key:

Value to use: ilsDirection[]={0,0.080000,-1};

· South:

[image: image3.wmf]ilsPosition

Direction

of landing

Key:

Value to use: ilsDirection[]={0,0.080000,1};

· East:

[image: image4.wmf]ilsPosition

Direction

of landing

Key:

Value to use: ilsDirection[]={-1,0.080000,0};

· West:

[image: image5.wmf]ilsPosition

Direction

of landing

Key:

Value to use: ilsDirection[]={1,0.080000,0};

Other Directions:

This is a bit harder, and requires a bit of maths.

To make it a bit simpler, I made an Excel worksheet that will work out the values for you. All you need is the direction in degrees you want the runway to run in.

· ilsDirection.xls

[image: image7.png]

[image: image8.png]

[image: image6.jpg]iection of runway (degrees)
Glideslape (degrees) 45

Cutpu

0.0000] __0.080] -1.0000)

When you open ilsDirection.xls, you get a worksheet with the image above.

· Inputs:

Direction of runway:

· the direction your runway runs in, in degrees. Anywhere from 0(to 360(.

 Glideslope:

· the angle of descent you want planes to take. OFP default is 4.6

· Outputs:
Write each value into ilsDirection[], separated by a comma.

e.g. for the example above, the value would be:

ilsDirection[]={0,0.080,-1};

If you can’t get the Excel sheet to work, or you want to know how it all works, then read the section below.

If you don’t care how it works, skip to ilsTaxiOff[].
· ilsDirection explained:

ilsDirection[]={0,0.080000,-1};

The format used for ilsDirection is X,Z,Y. So the first number above stands for the X axis. The second number the Z axis (descent), and the third number for the Y axis.

To work out ilsDirection:

a) Find the direction of your runway.

b) Find the reciprocal of that direction

c) Convert this new value into X,Z,Y co – ordinates.

d) Put these into ilsDirection.

Part a)

You should have found the direction of your runway from Other Directions above. If not click here
[image: image9.png]

Part b)
If the direction of your airstrip is 360 degrees, then the reciprocal of that direction is 180 degrees. (basically the opposite direction on a compass).

i.e.

To find the reciprocal +/- 180 to your direction.

[image: image10.png]

Make sure the result is:

· between 0 and 360 degrees

· the result is positive

Part c)
To work out the different values, you need to use trigonometry.

X = sin (reciprocal of runway direction)

Y = cos (reciprocal of runway direction)

Z = sin (slope of descent required)

e.g.

Runway running north:

Direction = 360 degrees

Reciprocal = 180 degrees

Slope wanted = 4.6 degrees

X = sin 180

Y = cos 180

Z = sin 4.6

X = 0, Y = -1, Z = 0.0800

Part d)
Now you have all the values, put them into ilsDirection using the X, Z, Y format.

Note: Z comes before Y -> not a typo :0)

For the above example: ilsDirection[]={0,0.080000,-1};

Not too hard is it??

The two next ones are a little more complicated.

Bizarrely, BIS decided to name the waypoints for taking off ilsTaxiIn, and the one for landing ilsTaxiOff, which doesn’t seem to make much sense, anyway..

ilsTaxiOff[]

You define this in the same way as ilsPosition above, just add more pairs of co –ordinates.

· Start off with the co – ordinates you have used for ilsPosition, so the AI knows where its starting from

· Then define the co – ordinates that you are going to use for the next waypoint and so on. This next waypoint would typically be just before the turn where you want the plane to go from the runway onto the taxiway.

Remember to put a comma after each co – ordinate and co –ordinate pair, except for the very last one before the bracket. The last pair should be the co – ordinates of where you want the plane to end up when its finished taxiing off the runway after landing.

The Everon airstrip used the following:

ilsTaxiOff[]={4772,10923,4772,"10923+878","4772+8","10923+886","4772+61","10923+886","4772+69","10923+878","4772+69","10923+400"};

Notice that here its split into 2 lines. This is only because it won’t fit on the page in one line. In your config.cpp make sure it’s all in one line.

Also notice the use of speech marks: "4772+69","10923+400"

This is because on Everon, the point at the end of the runway is at X 4772, Y 10923.

All the speech marks and +69, +400 mean is add 69 to 4772 and add 400 to 10923.

The same result can be achieved using:

4841,11323

The benefit of using speech marks is it is easier to fine tune your waypoints later, just by increasing or decreasing the +… value.

ilsTaxiIn[]

Define this in the same way as above. If you are using a shared waypoint (you don’t have to), then put the last pair of co –ordinates from above as the first ones in this array.

Again the Everon example is:

ilsTaxiIn[]={"4772+69","10923+400","4772+69","10923+95","4772+61","10923+87","4772+8","10923+87",4772,"10923+95",4772,"10923+150"};

Notice "4772+69","10923+400" is the last pair from ilsTaxiOff and the first pair here.

Stage 5

That’s the hard bit done ;)

PBO your island again with the new config.cpp, and put it into your Addons folder.

Then start the game. One way to test your waypoints is to put yourself in a chopper, and use a plane to land by putting this in its Init field:

this land “LAND”

and setting special to Flying. Now the plane will circle the airstrip, line up for the approach and assuming you’ve got all your waypoints right, touch down and taxi to the right spot.

If not, make sure your co – ordinates are accessible. If you have an airstrip going north, and you put a waypoint too far to the north, past the end of the runway, the plane will simply touch down, then take off again trying to get to the next waypoint.

Another way to test is to set yourself in a plane, with special set to Flying, and then select Autopilot from the action menu, which will land the plane for you (not sure if it taxi’s as well, don’t think it does, but its useful for checking your ilsPosition is correct.

Hope all this helps, if you have any ideas, think bits are wrong or just plain hard to understand, give me a shout and I’ll update it.

Marksman

(a big thanks to Dinger, who figured out what the numbers in ilsDirection stand for, and MadAussie who made the island used for testing)

� EMBED PBrush ���

� EMBED PBrush ���

_1087656711.unknown

_1087657053.unknown

_1087833057

_1087833168

_1087657186.unknown

_1087656844.unknown

_1085423863.unknown

