
BAS f Manual
For BAS f Version: 1-3-1

Authors Fer
Kegetys
kevb0

Editors Kronzky
Serclaes
Messiah (aka Messiah2)

Translators Serclaes
Messiah (aka Messiah2)

Table of Contents
INTRODUCTION...3

WHO IS THE FRAMEWORK FOR?...3
SECTION A..4

CORE COMPONENTS...4
SELECT YOUR ISLAND...5
NAMING YOUR MISSION...7
LOADING SCREEN TEXT..9
RESPAWN SETTINGS...10
CONFIGURABLE PLAYABLE SLOTS...11
CONDITIONS SELECTOR..12
GEAR SNIPPETS...15
AUTOMATIC BODY REMOVAL..17
MULTIPLAYER ENDING CONTROLLER..19
SAMPLE MARKERS...21
DEBUG MODE...22
BAS SERVER LOGIC..25
BAS F COMMON LOCAL VARIABLES...26
BRIEFING FILE TEMPLATE..28
README FILE TEMPLATE..30
WHAT DO I HAVE NOW?..31

SECTION B..32
OPTIONAL COMPONENTS...32
AI SKILL SELECTOR (COOP VERSION)...33
AI SKILL SELECTOR (ATTACK & DEFEND VERSION)..36
AUTHORISED CREW CHECK...39
AUTHORISED CREW TYPE CHECK...41
KEGETYS SPECTATOR SCRIPT FOR ARMA..42
DYNAMIC VIEW DISTANCE...44
MULTI-SIDE BRIEFING FILE TEMPLATE..46
HIDE ENEMY OBJECTIVES..48
CASUALTIES CAP..49
CASUALTIES CAP (ADVANCED)..50
AUTOMATIC BODY REMOVAL (FIFO VERSION)..51
CONFIGURABLE PLAYABLE SLOTS (ACE VERSION)..53

SECTION C..54
SHACKTACTICAL OPTIONAL COMPONENTS..54
SHACKTACTICAL: BASELINE MISSION FILE TEMPLATE..55
SHACKTACTICAL: GROUP IDS..59
SHACKTACTICAL: MARKERS..61
SHACKTACTICAL: MARKERS (ADDON VERSION)...64
SHACKTACTICAL: FIRETEAM MARKERS...67
SHACKTACTICAL: FIRETEAM MARKERS (ADDON VERSION)...69
SHACKTACTICAL: BRIEFING FILE TEMPLATE (COOP VERSION).......................................71
SHACKTACTICAL: BRIEFING FILE TEMPLATE (ATTACK & DEFEND VERSION)....................73
SHACKTACTICAL: COC CEX SUPPORT...75
SHACKTACTICAL: KEVB0'S WOUNDING SCRIPT...77
SHACKTACTICAL: KEVB0'S OUTTRO SCRIPT..78
SHACKTACTICAL: KEVB0'S ASSIGN GEAR SCRIPT..80
SHACKTACTICAL: SHACKTAC F..81

SECTION D..82
LDD KYLLIKKI OPTIONAL COMPONENTS..82
LDD KYLLIKKI : BASELINE MISSION FILE TEMPLATE (FDF VERSION)..............................83

INTRODUCTION
A problem with mission-making, and multi-player missions in particular, is that the 'learning-
curve' is steep. The mission designer has to learn about many issues, and ensure that several
key components (such as briefing files, gear selection snippets, automatic removal of dead
bodies etc.) are created, correctly configured and tested in order to build a quality mission with
high levels of re-playability and performance.

Often the overall quality of a designer's early missions suffers because s/he is having to 're-
invent the wheel', writing and testing his/her own library of personally developed scripts, and
finding and learning how to use scripts and code snippets written by other designers.

BAS f is an attempt to help the new mission designer take advantage of a library of pre-tested
components that will increase the quality, re-playability and performance of his/her missions,
whilst allowing him/her to focus on making his/her own unique ideas come to life.

BAS f is a framework: an MP mission folder containing a library of scripts, functions and
template files, plus a manual (this document). The framework is designed to provide the
mission designer, after minimal additional configuration, with a selection of pre-tested features
and functionality intended to improve the overall quality and re-playability of his/her mission.

Since BAS f is a framework, and not a template, the design of the actual mission is completely
open; the framework is intended only to save time for the designer by providing components
such as weather selections that work with join-in-progress (JIP), or pre-configured gear
selections for re-equipping soldiers during the mission briefing. For many components care has
also been taken to localise messages and texts (where used) into several languages.

Importantly, all components of the framework are fully explained in this document, feature
extensive commenting within script files, and each can be disabled if desired.

This manual is designed to guide the mission designer through the full configuration process,
as well as provide instructions for optional components (found in section B).

WHO IS THE FRAMEWORK FOR?
BAS f is aimed at the new ArmA mission designer, although it is not intended for complete
beginners. To use BAS f the mission designer should have a basic understanding of:

 How to open the MP mission editor
 How to place and edit units, triggers, waypoints and markers in the editor
 The ArmA scripting syntax (for .sqf files)
 The roles of key files: description.ext and init.sqf
 The role of script files (.sqf files)

If a mission designer has already created his/her first few missions, everything in BAS f should
be relatively straightforward.

In addition, mission designers with intermediate experience may also find BAS f useful as a
time-saver, or as the basis for their own personal base framework(s).

BAS, and its partners, plans to continually evolve this framework, and will also explore the
creation of specialised versions catering for specific mission types. For links to the most recent
version of BAS f please see the BI Community wiki:

http://community.bistudio.com/wiki/BAS_f

http://community.bistudio.com/wiki/BAS_f

SECTION A

CORE COMPONENTS
The following mini-guides, core components and pre-configured mission settings are included
in this version of the BAS f framework:

 Select Your Island
 Naming Your Mission
 Load Screen Text
 Respawn Settings
 Configurable Playable Slots
 Conditions Selector
 Gear Snippets
 Automatic Body Removal
 Multiplayer Ending Controller
 Sample Markers
 Debug Mode
 BAS Server Logic
 BAS f Common Local Variables
 Briefing File Template
 ReadMe File Template

Some of these components require minor amounts of configuration, however the majority are
ready for use without any further editing. This manual will step the mission designer through
all components, and indicate any edits necessary for final configuration (including how to
disable a specific component).

SELECT YOUR ISLAND
BAS f supports a wide range of official and community-generated islands in ArmA. All the files
for a mission are stored within a single folder, which is specific to a particular Island. To begin
using the BAS f framework you must first decide which island you want to use for you mission,
and then use the appropriate folder.

Note: For some islands, the pre-placed units, markers and games logics may not be positioned
over dry land by default. These items are always found in the lower left-hand side of the map.

Official Islands

Island Template Folder Notes
Porto BAS_f_v1-3-1.Porto Requires Queen's Gambit expansion for ArmA.

Rahmadi BAS_f_v1-3-1.Intro

Sahrani BAS_f_v1-3-1.Sara

South Sahrani BAS_f_v1-3-1.SaraLite

United Sahrani BAS_f_v1-3-1.Sara_dbe1 Requires Queen's Gambit expansion for ArmA.

Community Islands

Island Template Folder Notes
Afghan Village BAS_f_v1-3-1.afghan_village By Opteryx, for more information please

search the BI forums.

Avgani BAS_f_v1-3-1.Avgani By Opteryx, for more information please
search the BI forums.

LDDK Training Island BAS_f_v1-3-1.LDDK_Isle By Goeth of LDD Kyllikki, this island is also
known as Isla de Pollo

Podaga BAS_f_v1-3-1.FDF_Isle1 Part of the FDF Mod, or more information
please search the BI forums.

Sakakah Al Jawf BAS_f_v1-3-1.Sakakah By Opteryx, for more information please
search the BI forums.

Schmalfelden BAS_f_v1-3-1.Schmalfelden By Nicholas Bell, for more information please
search the BI forums.

Uhao BAS_f_v1-3-1.Uhao By OFman, for more information please search
the BI forums.

ACE Islands

Island Template Folder Notes
ACE Nogova BAS_f_v1-3-1.ACE_Island_Noe

ACE Nabukonodexa BAS_f_v1-3-1.ACE_Island_nabukonodexa

ACE Messor BAS_f_v1-3-1.ACE_Island_Messor

ACE Leusderheide BAS_f_v1-3-1.ACE_Island_leusderheide

ACE Lake Martin BAS_f_v1-3-1.ACE_Island_lakemartin

ACE Ivtiliac BAS_f_v1-3-1.ACE_Island_ivtiliac

ACE Isla de Stella BAS_f_v1-3-1.ACE_Island_isladestella

ACE Occasus BAS_f_v1-3-1.ACE_Island_Occasus

ACE Highlands BAS_f_v1-3-1.ACE_Island_highlands

ACE OFP World BAS_f_v1-3ace_island_ofp_world

ACE Havelte BAS_f_v1-3-1.ACE_Island_havelte

http://www.flashpoint1985.com/cgi-bin/ikonboard311/ikonboard.cgi?s=8269f70655b392f3bbdf83ae51cde9d8;act=ST;f=70;t=73113;st=0
http://www.flashpoint1985.com/cgi-bin/ikonboard311/ikonboard.cgi?s=8269f70655b392f3bbdf83ae51cde9d8;act=ST;f=70;t=73113;st=0

ACE Gaia BAS_f_v1-3-1.ACE_Island_Gaia

ACE Freya BAS_f_v1-3-1.ACE_Island_freya

ACE Elephant Head BAS_f_v1-3-1.ACE_Island_elephanthead

ACE Everon BAS_f_v1-3-1.ACE_Island_Eden

ACE Clarck Island BAS_f_v1-3-1.ACE_Island_clarkisland

ACE Canyonda BAS_f_v1-3-1.ACE_Island_canyonda

ACE Kolgujev BAS_f_v1-3-1.ACE_Island_Cain

ACE Samak Hills BAS_f_v1-3-1.ACE_Island_samakhills

ACE Sandy Rocks BAS_f_v1-3-1.ACE_Island_sandy_rocks

ACE Saru BAS_f_v1-3-1.ACE_Island_saru

ACE Skye BAS_f_v1-3-1.ACE_Island_skye

ACE Sontonagh
district

BAS_f_v1-3-1.ACE_Island_sontonagh_distric
t

ACE Torment Valley BAS_f_v1-3-1.ACE_Island_torment_valley

ACE Trinity BAS_f_v1-3-1.ACE_Island_trinity

ACE Uwar desert BAS_f_v1-3-1.ACE_Island_uwar_desert

ACE 73 Eastings BAS_f_v1-3-1.ACE_Island_73eastings

ACE Malden BAS_f_v1-3ace_island_abel

ACE Anilym BAS_f_v1-3-1.ACE_Island_anilym

ACE Atlantis Gold BAS_f_v1-3ace_island_atlantis_gold

ACE Avignon BAS_f_v1-3-1.ACE_Island_avignon

ACE Virovitia BAS_f_v1-3-1.ACE_Island_virovitica

NAMING YOUR MISSION
Before editing can commence you will want to name your mission by following these steps
(make sure you have not started ArmA yet, and if necessary quit the game first):

Note: The following steps assume that the island being used is Sahrani. If you decide to use
another island, the steps are the same, but the folder name will be different (e.g.
BAS_f_v1-3-1.Intro for missions set on Rahmadi, or BAS_f_v1-3-1.Porto for mission set on
Porto).

1. Pick a name for your mission (see notes below).

2. Before starting ArmA, copy the scenario folder BAS_f_v1-3-1.Sara and rename the
copy YourMissionName.Sara (be careful not to change the letters after the '.') - you
will want to put this folder into the location:

C:\Documents and Settings\YourName\My Documents\ArmA Other
Profiles\YourName\MPMissions

3. In the mission folder, open the file mission.sqm and look for the line:

briefingName="*** Insert name here. ***";

Change the line to read:

briefingName="YourMissionName";

This must exactly match the name you gave to the mission folder in step 2 (but without
the .Sara part of the folder name).

4. Start ArmA, and open the scenario for editing. Do this via the menu options: Play >
Multiplayer > New > Sahrani > YourMissionName (missions made with BAS f are designed
to be edited in native MP mode).

5. In the editor, open the Intel dialog (by clicking on the date in the top-right) and change
the value for the Description: field from MISSION DESCRIPTION to your chosen
description. An example might be: “Clear the town of enemy troops”

6. Open the file description.ext and look for the code segment entitled:

 // BAS f - Mission Header

You should notice that in the code segment values are set for gameType, minPlayers
and maxPlayers.

7. In the version of the file description.ext that comes with BAS f, the value for
gameType is set as Coop. If your mission is not going to be a co-operative one, you
should change this value to CTF, Team etc.

8. The values for minPlayers and maxPlayers reflect the minimum and maximum number
of human players that can participate in the mission. In the version of the file
description.ext that comes with BAS f, the values for minPlayers and maxPlayers
are set at 1 and 10 respectively. You should change these values to reflect the number
of playable slots in your mission.

Something that you may want to do when naming your mission – and particularly when re-
naming the mission folder – is follow a popular naming convention. Missions names that follow
the most popular conventions can look this:

co_ace_10_Victory_Rose

Naming conventions are designed to allow players and administrators to quickly learn a lot
about the mission just from the name itself. For example, the above example reveals several
bits of information:

 The mission is called Victory Rose
 The maximum number of players is 10
 The mission is co-operative
 Addons from the ACE mod are required

With two key differences (see below), BAS suggests using the naming convention followed by
makers of missions for Operation Flashpoint (OFP, the game which came before ArmA). You
can read about this convention at:

http://www.flashpoint1985.com/cgi-bin/ikonboard311/ikonboard.cgi?act=ST;f=2;t=26694

Due to differences in the way that ArmA handles file and folder names, the two key differences
suggested by BAS are:

1. Use underscores (_) instead of spaces () in file and folder names.

2. Use dashes (-) instead of periods (.) when including version numbers in names (e.g.
v1-1 instead of v1.1), because ArmA will only allow one period (.) in a file name.

3. Do not use the (@) character.

http://www.flashpoint1985.com/cgi-bin/ikonboard311/ikonboard.cgi?act=ST;f=2;t=26694

LOADING SCREEN TEXT

When the mission is loading it is possible to display some text on the screen, such as the name
of the mission, or the name of its designer. To use the loading screen text:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - Loading Screen Text

2. Edit the following line, inserting your desired text between the inverted commas:

onLoadMission="";

An example would be:

onLoadMission="Get Ready...";

Please note that a mission that takes very little time to load will only display the message for a
short time, and your message may not be readable in that time-frame.

To disable this component completely simply skip the steps above (in the version of the file
description.ext that comes with BAS f, the value for onLoadMission is left blank).

RESPAWN SETTINGS
When a player dies several options for respawning are available, from becoming a seagull to
spawning into an AI within the same group. The options available are:

1. BIRD - Respawn as a seagull.
2. INSTANT - Respawn just where you died (you will not keep your gear).
3. BASE - Respawn at base marker (these must be placed in the editor).
4. GROUP - Respawn in your group (if no AI slots are left, you become a seagull).

To create the desired type of respawn a segment of code must be placed in the
description.ext file. In the version of the file description.ext that comes with BAS f, the
default option for respawn is for players to become a seagull.

To change the type of respawn:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - Respawn Settings

2. Edit the following line, changing the value of respawn to the desired respawn type (see
list above):

respawn=BIRD;

3. If you have selected BASE respwn then you must ensure that markers with the
following names exist (place the markers on the map where you want each side to
respawn):

respawn_west
respawn_east
respawn_guerrila
respawn_civilian

4. If you have selected BASE or INSTANT respawn you can also control the time it takes
for the player to move into the free AI. Edit the following line, changing the value of
respawndelay to the desired number of seconds:

respawndelay=3;

This component cannot be disabled. As described above, in the version of the file
description.ext that comes with BAS f, the default option for respawn is for players to
become a seagull.

CONFIGURABLE PLAYABLE SLOTS
By default, a mission created with BAS f contains 1 BLUFOR player group, with 10 units in the
group. All individual units are playable. The group is pre-named f_GrpBLU11A, using the
following line in each individual unit's Init: field:

f_GrpBLU11A = group this;

The reason this line is present in the Init: field of every individual unit is so that regardless of
whether one, some or all units are used in the mission, the group is always named
f_GrpBLU11A (if the line is only placed in the Init: field of the group leader, the group will not
be named unless the leader slot is used by a human player, which is not guaranteed).

Initially, the group is composed of BLUFOR soldiers from the standard ArmA core (a basic
squad, plus a medic) - you can of course change this by selecting an individual in the editor,
double-clicking, and altering the value of the Unit: drop-down. There are some important rules
to remember when you are configuring the group and/or individuals:

a) Try to change individual units by editing an existing individual, since this helps to
preserve the contents of the Init: line.

b) If you accidentally remove an individual and replace it, ensure its Init: field is the same
as the other group members (e.g. f_GrpBLU11A = group this;).

CONDITIONS SELECTOR

In order to allow different time and weather conditions to be selected each time the mission is
played, a selector is made available in the mission set-up screen. To create this selector
segments of code are placed in the following files:

 description.ext
 init.sqf
 stringtable.csv
 f\common\f_setMissionConditions.sqf

By default, the following time and weather options are available:

Option Time Weather

21 Early Morning Clear

22 Early Morning Overcast

23 Early Morning Storm

24 Early Morning Light Fog

25 Early Morning Heavy Fog

26 Morning Clear

27 Morning Overcast

28 Morning Storm

29 Morning Light Fog

30 Morning Heavy Fog

1 Noon Clear

2 Noon Overcast

3 Noon Storm

4 Noon Light Fog

5 Noon Heavy Fog

31 Afternoon Clear

32 Afternoon Overcast

33 Afternoon Storm

34 Afternoon Light Fog

35 Afternoon Heavy Fog

36 Evening Clear

37 Evening Overcast

38 Evening Storm

39 Evening Light Fog

40 Evening Heavy Fog

6 Dusk Clear

7 Dusk Overcast

8 Dusk Storm

9 Dusk Light Fog

10 Dusk Heavy Fog

11 Night Clear

12 Night Overcast

13 Night Storm

14 Night Light Fog

15 Night Heavy Fog

16 Dawn Clear

17 Dawn Overcast

18 Dawn Storm

19 Dawn Light Fog

20 Dawn Heavy Fog

99 Debug Mode Debug Mode

The default selection is Noon, Clear. The Debug Mode option will set the same time and
weather conditions as Noon, Clear, but will also turn on debug mode (for more information
please see the section in this document on how to use the BAS f debug mode).

The options have also been translated into English, Czech, German, Polish, Spanish, French
and Russian (using text strings contained in the file stringtable.csv); players using copies of
ArmA released in those languages will automatically see the options in translated form.

No configuration or editing of this component is required.

To change the default selection:

1. Open the file description.ext and look for the line:

defValueParam1 = 1;

2. Change 1 for any number between 1 and 20 (see the list of options above).

To disable this component completely:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - Mission Conditions Selector

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

3. Open the file init.sqf and look for the code segment entitled:

// BAS f - Mission Conditions Selector

4. Delete everything from the above line (including the line itself), to the next instance of:

// ===

5. In the editor, open the Intel: dialog (by clicking on the date in the top-right) and change
the values for the Date: and Time: fields, as well as the Weather: and Fog: sliders, to
reflect your desired mission conditions.

GEAR SNIPPETS

In order to allow changes to be made to the gear selection of individuals during the mission
briefing, weapons, magazines and equipment must be specified as being available in the
'description.ext' file. By default, the 'description.ext' file that comes with BAS f contains
references for all weapons, magazines and equipment from:

 ArmA - Weapons PBO (all gear from the basic game)

Obviously, unless modified this may allow players too much choice in terms of available
weapons, magazines and equipment. In order to edit the available gear:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - Gear Snippets

You should notice that in the first class weapons are grouped by side, and in the
following class magazines are grouped correspondingly.

2. To make a weapon unavailable for selection, delete its line or comment it out by placing
// at the start of the line. For example, to make the M4 unavailable, edit its line to:

// class M4 {count = 24;};

3. To make a particular magazine type unavailable for selection, use the same approach
as in step #2.

4. To alter the number of weapons and magazines available, simply alter the value of

count. By default, 24 of each weapon, and 24 of each magazine type are provided. You
may want to limit the availability of certain items such as sniper rifles or rockets.

When editing the weapons and ammunition code segment remember that certain weapons
share magazine types. Thus, when you have decided upon the weapons that will be made
available make sure that the appropriate magazine types are also available - detailed
references covering weapons and their possible magazine types can be found on the BIS
Community Wiki, also know as the Biki (http://community.bistudio.com/wiki/).

To disable this component completely:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - Gear Snippets

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

http://community.bistudio.com/wiki/

AUTOMATIC BODY REMOVAL
In order to reduce lag in large missions a common technique is to remove dead bodies from
the battlefield. This is accomplished by adding an event handler to each unit: when the unit is
killed, a script is run that will pause for a certain amount of time, then delete the body.

BAS f includes a component that will automatically add such an event handler to all units in the
mission. To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\f_setLocalVars.sqf
 f\common\f_addRemoveBodyEH.sqf
 f\common\f_removeBody.sqf

By default, this component is configured to remove all dead bodies 180 seconds (3 minutes)
after the unit has been been killed.

To change length of time before a dead body is removed:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Automatic Body Remover

2. Edit the following line, changing the value of f_removeBodyDelay to the desired number
of seconds for the delay before a body is deleted:

f_removeBodyDelay = 180;

Because the gear on a dead body is also deleted, you may not want to apply this feature to
some groups of soldiers (such as the players' group). To make a group exempt from this
feature, and never delete its units' bodies:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Automatic Body Remover

2. Edit the following line, changing the value of f_doNotRemoveBodies from [] to include
the name of the group(s) you want to exempt.

f_doNotRemoveBodies = [];

For example, to make the default players' group (which is named f_GrpBLU11A by
default in BAS f) exempt from this feature, change the line to:

f_doNotRemoveBodies = [f_GrpBLU11A];

To make more than one group exempt, use commas to separate the group names:

f_doNotRemoveBodies = [f_GrpBLU11A,GroupTwo,GroupThree];

A key limitation of this component is that it cannot automatically add the event handler to
units which are created dynamically during the mission (for example, if you use a script to
generate enemies or civilians dynamically). However, you can add the event handler by
ensuring that any dynamically-created units have the following code in their Init: line:

this addEventHandler ["killed", {_this execVM "f\common\f_removeBody.sqf"}];

To disable this component completely:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Automatic Body Remover

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

MULTIPLAYER ENDING CONTROLLER
For various reasons, it is not always easy to get a mission to end gracefully across all clients
and the server - not all players see the correct debriefing (from the briefing.html file). The
Multiplayer Ending Controller component allows a desired mission ending to be invoked on the
server after the clients – which means all players see the appropriate debriefing. To create this
functionality segments of code are placed in the following files:

 init.sqf
 f\common\f_mpEndSetup.sqf
 f\common\f_mpEndReceiver.sqf
 f\server\f_mpEndBroadcast.sqf

In your mission, whenever you want the mission to end (such as in a trigger or a script), use
the following code (where myEnd is anything you choose, and n is the number of the scenario
ending you wish to invoke; possible values are: 1,2,3,4,5,6):

myEnd = [n] execVM "f\server\f_mpEndBroadcast.sqf";

Please note that the above code can be executed on any machine, but it will only cause the
component to work (and thereby invoke an ending) if it is also run on the server.

You can put the above code in the On Activation field of a normal trigger, or within a custom
script (.sqf file). It is important to note that if you use triggers, you should use the type
Switch, and never the type End1 / End2 etc. (because the multiplayer ending controller
automatically creates and uses an End trigger).

The component will automatically ensure the desired ending occurs on the clients first, then on
the server. Your mission will now end gracefully across all machines, displaying the correct
debriefing for all players (make sure your briefing.html file contains text for each ending you
plan to use – see the Briefing File Template section of this document for more information).

If you want to make further use of the component to perform clean-up tasks, such as setting
objectives to pass/fail, or invoking scripted cut-scenes when the mission ends:

1. Open the file f\common\f_mpEndReceiver.sqf and look for the code segment entitled:

// CLEAN-UP OBJECTIVES & TRIGGER CUT-SCENES ETC.

2. If you read through this section, you will see spaces marked:

// Ending #1
case 1:
{

// Place any custom code for ending #1 after this line:

};

3. There will be a space for each of the possible endings (1 to 6). Simply insert your
ending-specific code in the space provided. An example is:

// Ending #1";
case 1:
{

// Place any custom code for ending #1 after this line:
"1" objStatus "DONE";
"2" objStatus "DONE";

"3" objStatus "DONE";
};

To disable this component completely:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Multiplayer Ending Controller

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

SAMPLE MARKERS
A quality mission will usually include several markers placed on the map, which help the
players to understand key locations such as insertion and extraction points. As a start, the
mission file that comes with BAS f contains two pre-placed markers.

To view and place the two markers:

1. In the ArmA editor press F6 to make markers visible.

2. By the default player group you will see two markers:

 mkrInsertion (a green up arrow)
 mkrExtraction (a grey down arrow)

3. Click and drag a marker to change its position on the map.

Generally, the marker mkrInsertion should be placed where the players start, whilst the
marker mkrExtraction should be placed where the players end the mission. However, there
are absolutely no fixed rules!

Markers can also be used in the briefing – see the section of this manual covering the briefing
file template for more information.

DEBUG MODE

To assist the mission designer with testing new scripts and functionality, BAS f includes a
debug mode. By default, the debug mode is activated by selecting 'Debug Mode' in either the
Conditions Selector or the AI Skill Selector (during mission set-up). To create this functionality
segments of code are placed in the following files:

 init.sqf
 description.ext
 f\common\f_setAISkill.sqf
 f\common\f_setMissionConditions.sqf

At the start of the file init.sqf is a segment of code entitled:

// BAS f - Debug Mode

This segment of code will check to see if the value of either Param1 (which is set by the
Conditions Selector) or Param2 (which is set by the AI Skill Selector) equals 99. If this is the
case, the value of a global variable, f_var_debugMode, is automatically set to 1 on all
machines, including the server.

In your scripts you may want to include hint or sideChat commands (or other segments of
code) which only execute if the mission is being run in debug mode.

To take advantage of this feature its is suggested that you use the following code in your
scripts:

// DEBUG
if (f_var_debugMode == 1) then
{
// Place code to run ONLY in debug mode after this line:

};

To disable this component completely:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Debug Mode

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

3. Open the file description.ext and look for the code segment entitled:

// BAS f - Mission Conditions Selector

4. Find the line that begins:

valuesParam1[] =

Remove the final value, 99. Remember to remove the comma (,) before it as well.

5. Find the line that begins:

textsParam1[] =

Remove the final value, $STR_f_ConditionsSelector_Option21. Remember to remove
the comma (,) before it as well.

6. Still in the file description.ext, look for the code segment entitled:

// BAS f – AI Skill Selector

7. Find the line that begins:

valuesParam2[] =

Remove the final value, 99. Remember to remove the comma (,) before it as well.

8. Find the line that begins:

textsParam2[] =

Remove the final value, $STR_f_AISkillSelector_Option25. Remember to remove the
comma (,) before it as well.

BAS SERVER LOGIC

Whilst editing your mission you may encounter a server logic named BAS_Server_Logic placed
on the map. Please do not delete this game logic, as it is required by many components.

The BAS_Server_Logic can be used to determine if a script is being executed on the server, or
on a client. Within a script you can run different blocks of code on the server using the
following structure:

if (local BAS_Server_Logic) then
{
// Place code to run ONLY on the SERVER after this line:
}
else
{
// Place code to run ONLY on CLIENTS after this line:
};

Note: You can also use the command isServer instead of the BAS_Server_Logic.

Please be aware that, due to the way ArmA works, the following code will not work (i.e. it will
not end the script if it is not being executed on a server):

if (!local BAS_Server_Logic) then {exit;};

BAS F COMMON LOCAL VARIABLES
To help mission designers writing custom scripts, BAS f contains a component that
automatically generates a selection of useful common local variables. These variables provide
information such as arrays containing all the groups on a particular side, or all OPFOR men.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\f_setLocalVars.sqf

The script f_setLocalVars.sqf is executed at the start of the mission, on the server and
every client machine. The variables created are accurate only for the local machine. This
means that the precise value of any of the variables described below may differ from machine
to machine. However, for most of the variables (such as arrays containing all units in the
mission), the values are usually the same on all machines.

Once the script f_setLocalVars.sqf (which has the handle f_script_setLocalVars when
run from the init.sqf file) has completed, the following variables are available:

Variable Type Description
f_var_units Array Contains all units, regardless of side etc.

f_var_units_BLU Array Contains all BLUFOR units.

f_var_units_RES Array Contains all resistance units.

f_var_units_OPF Array Contains all OPFOR units.

f_var_units_CIV Array Contains all civilian units.

f_var_men Array Contains all men, regardless of side etc.

f_var_men_BLU Array Contains all BLUFOR men.

f_var_men_RES Array Contains all resistance men.

f_var_men_OPF Array Contains all OPFOR men.

f_var_men_CIV Array Contains all civilian men.

f_var_men_players Array Contains all players (excluding JIP players).

f_var_groups Array Contains all groups, regardless of side etc.

f_var_groups_BLU Array Contains all BLUFOR groups.

f_var_groups_RES Array Contains all resistance groups.

f_var_groups_OPF Array Contains all OPFOR groups.

f_var_groups_CIV Array Contains all civilian groups.

f_var_vehicles Array Contains all vehicles, regardless of side etc.

f_var_vehicles_BLU Array Contains all BLUFOR vehicles.

f_var_vehicles_RES Array Contains all resistance vehicles.

f_var_vehicles_OPF Array Contains all OPFOR vehicles.

f_var_vehicles_CIV Array Contains all civilian vehicles.

To use any of these variables in a custom script:

1. Ensure your custom script does not start until the variables have been set. This is done
by placing the following block of code at the start of your script (or at least before you
need to use the variables):

waitUntil {scriptDone f_script_setLocalVars};

Note: Do not disable, remove or alter the script f_setLocalVars.sqf, or stop it being called

by init.sqf, as the common local variables are essential for several core components within
the BAS f framework.

BRIEFING FILE TEMPLATE
A major configuration task is to create the briefing for the mission. The briefing is contained in
a separate file, briefing.html, which must be edited with a plain text or HTML editor. The
BAS f framework comes with a template briefing.html file for coop missions (there is also a
template for multi-side briefings – see optional component: Multi-Side Briefing File Template).

To create your briefing, open up the file briefing.html and complete the following sections:

 Notes
 Plan
 Debriefings
 Mission Credits

Throughout the briefing.html file the sections which you should edit have been labelled:

*** Insert [specific information] here. ***

Replace the text starting and ending with *** using your own content (delete the *** as well).

In the last section, Mission Credits, the suggested format for mission version is n-n-n (DD
MMM CCYY). An example of a mission that has reached version 1.7 on the 30th of April, 2007,
would be: 1-7-0 (30 APR 2007).

The format of the briefing.html file is similar to HTML, although it is not exactly the same.
Only a few HTML tags will work, but here are the key ones:

 - Will give a carriage return (new line).

 - Will give a blank line between paragraphs.

Text - Will create a link that, when clicked, will
automatically centre the map over the marker named mkrName (be sure to name the
marker in the ArmA editor).

If you would like to make the briefing available in more than one language, follow these steps:

1. Complete the original version of the briefing.html file in English, and save it.

2. Make a copy of the file, and rename it:

briefing.german.html

This will create a version of the file that is opened automatically by German language
versions of ArmA.

3. Open the file briefing.german.html and translate your inserted texts into German.

4. Repeat steps 2 and 3 for the languages: Czech, Polish, French, Spanish, Italian,
French and Russian. Note that if a non-English version of ArmA cannot find a copy of
the briefing.YourLanguage.html file in its language, it will use the file
briefing.html (which should be in English).

Please note that if you are creating a version in Russian, you must ensure that the file is saved
in Unicode format.

The version of the file briefing.html that comes with BAS f is simple, and intended for use
with co-operative missions where all players are on the same side. There is also a template
for multi-side briefings – see optional component: Multi-Side Briefing File Template.

To disable this component simply delete the file briefing.html (or replace it with your own
version). However, BAS recommends that all missions include a briefing!

README FILE TEMPLATE
Although not vital, it is good practice to create a readme file for the mission. This file is
particularly useful if your mission requires the player to certain addons, as it should detail
which addons are necessary, and where they can be downloaded from. The readme file is a
separate file, readme.txt, which can be edited with a plain text editor. The BAS f framework
comes with a template readme.txt file.

To create your readme, open up the file readme.txt. Throughout the file the sections which
you should edit have been labelled:

[Insert specific information here.]

Replace the text starting and ending with [] using your own content (delete the [] as well).

The version of the file readme.txt that comes with BAS f is simple, and intended for use with
co-operative missions. You should feel free to modify the template to suit your requirements.

To disable this component simply delete the file readme.txt (or replace it with your own
version). BAS recommends that all missions include a readme file.

WHAT DO I HAVE NOW?
You do not yet have a mission. What you have is a platform upon which you can now build
your mission. Why is the platform useful? Assuming you have used all the core components,
you can already say the following things about your mission:

 It is named in a proper fashion, not just at the file/folder level, but in all the other
places (such as in the editor).

 When the mission is loading, players see some meaningful custom text instead of just a
blank loading screen.

 The way in which respawning is handled has been considered carefully by you, the
mission designer.

 The playable slots are in groups with meaningful names (so that any third-party scripts
you choose to use will be able to identify and work with the soldiers).

 The mission can be played in 20 different combinations of time and weather conditions,
which means lots of re-playability.

 The weapons, ammunition and equipment use by players can be chosen prior to the
mission start, although the actual selection has been considered carefully by you.

 Mission performance is greatly enhanced, as all dead bodies are automatically removed
from the battlefield after a short pause.

 The handling of endings, and in particular the way in which de-briefings are presented
to clients, is handled more gracefully than the default ArmA end triggers alone.

 A debug mode is available for you to use – not only with BAS f components, but with
any third party scripts and functions you write or choose to import.

 The BAS Server Logic is pre-placed, giving you a quick method of checking if a script is
running on the server, or on a client machine.

 Your mission features a proper briefing file.
 Your mission is accompanied by a detailed readme file that will help players and server

admins to understand what addons are required (if at all), and where to get them.

Underpinning all of the above features are some key aspects:

 The components have been tested and developed specifically for MP.
 Where necessary, text strings, hints and messages have already been translated into

Czech, German, Polish, Russian, Spanish, French and English.

As you build your mission, you will also be able to use the optional components (described in
Section B of this manual), the ShackTactical Optional components (described in Section C of
this manual), and the LDD Kyllikki Optional components (described in Section D of this
manual) with the same ease and benefits as the core features listed above.

All you have to do now is write your mission ;)

SECTION B

OPTIONAL COMPONENTS
The following mini-guides and optional components are intended to provide your mission with
extra features such as automatic team-killer punishment, or restricted vehicle crews. Each
component has been pre-integrated within BAS f, but is disabled by default. Included in this
version of the BAS f framework:

 AI Skill Selector (Coop Version)
 AI Skill Selector (Attack & Defend Version)
 Authorised Crew Check
 Authorised Crew Type Check
 Kegetys Spectator Script for ArmA
 Dynamic View Distance
 Multi-Side Briefing File Template
 Hide Enemy Objectives
 Casualties Cap
 Casualties Cap (Advanced)
 Automatic Body Removal (FIFO Version)
 Configurable Playable Slots (ACE Version)

AI SKILL SELECTOR (COOP VERSION)

A selector is made available in the mission set-up screen that allows players to change the
relative skill levels of friendly and enemy AI units. To create this selector segments of code are
placed in the following files:

 description.ext
 init.sqf
 stringtable.csv
 f\common\f_setLocalVars.sqf
 f\common\f_setAISkill.sqf

By default, the following skill options are available:

Option Friendly Enemy

6 Super Super

7 Super High

8 Super Medium

9 Super Low

11 High Super

12 High High

13 High Medium

14 High Low

16 Medium Super

17 Medium High

18 Medium Medium

19 Medium Low

21 Low Super

22 Low High

23 Low Medium

24 Low Low

99 Debug Mode Debug Mode

You may note that the numbering sequence used above is incomplete – the missing numbers
are reserved for a future version of this component.

The default selection is Super, Super. The Debug Mode option will set the same AI skill levels
as Low, Low, but will also turn on debug mode (for more information please see the section in
this document on how to use the BAS f debug mode).

Additionally, the options have also been translated into English, Czech, German, Polish,
Spanish, French and Russian (using text strings contained in the file stringtable.csv);
players using copies of ArmA released in those languages will automatically see the options in
translated form.

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - AI Skill Selector (Coop Version)

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\f_setAISkill.sqf";

3. Open the file description.ext and look for the code segment entitled:

// BAS f - AI Skill Selector (Coop Version)

4. Edit the following lines, removing the // at the start of each line:

// titleParam2 = $STR_f_AISkillSelector_Title;
// valuesParam2[] = {6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24,99};
// defValueParam2 = 6;
// textsParam2[] = {$STR_f_AISkillSelector_Option06, ...

Sides (west, resistance, east and civilian) are defined as friendly or enemy using four
lines in the init.sqf file. In the version of the file init.sqf that comes with BAS f, the
default option is for west, resistance and civilian to be friendly, whilst east is enemy.

To change the friendly and enemy designations for each side:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – AI Skill Selector (Coop Version)

2. Edit the following line, changing the value f_isFriendlyBLU to 1 if you want the side
west to be friendly, or 0 if you want west to be enemy:

f_isFriendlyBLU = 1;

3. Repeat step 2 for the variables f_isFriendlyRES (the resistance side),
f_isFriendlyOPF (the east side) and f_isFriendlyCIV (the civilian side).

To change the default selection:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - AI Skill Selector (Coop Version)

2. Within the same code segment, look for the line:

defValueParam2 = 6;

3. Change 6 for a number between 6 and 24 that is used in the table above.

A key limitation of this component is that it cannot automatically set the skill level of units
which are created dynamically during the mission (for example, if you use a script to generate
enemies or civilians dynamically). However, you can ensure that the skill level of any
dynamically-created units is set according to the same level as other units on their side by
inserting some code in their Init: line. The code required is different for each side:

 For west (BLUFOR) units, use: this setSkill f_skillBLU;
 For resistance (Independent) units, use: this setSkill f_skillRES;
 For east (OPFOR) units, use: this setSkill f_skillOPF;
 For civilian units, use: this setSkill f_skillCIV;

AI SKILL SELECTOR (ATTACK & DEFEND VERSION)

A selector is made available in the mission set-up screen that allows players to change the
relative skill levels of BLUFOR and OPFOR AI units. To create this selector segments of code
are placed in the following files:

 description.ext
 init.sqf
 stringtable.csv
 f\common\f_setLocalVars.sqf
 f\common\f_setAISkillAD.sqf

By default, the following skill options are available:

Option BLUFOR OPFOR

6 Super Super

7 Super High

8 Super Medium

9 Super Low

11 High Super

12 High High

13 High Medium

14 High Low

16 Medium Super

17 Medium High

18 Medium Medium

19 Medium Low

21 Low Super

22 Low High

23 Low Medium

24 Low Low

99 Debug Mode Debug Mode

You may note that the numbering sequence used above is incomplete – the missing numbers
are reserved for a future version of this component.

The default selection is Super, Super. The Debug Mode option will set the same AI skill levels
as Low, Low, but will also turn on debug mode (for more information please see the section in
this document on how to use the BAS f debug mode).

Additionally, the options have also been translated into English, Czech, German, Polish,
Spanish, French and Russian (using text strings contained in the file stringtable.csv);
players using copies of ArmA released in those languages will automatically see the options in
translated form.

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - AI Skill Selector (Attack & Defend Version)

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\f_setAISkillAD.sqf";

3. Open the file description.ext and look for the code segment entitled:

// BAS f - AI Skill Selector (Attack & Defend Version)

4. Edit the following lines, removing the // at the start of each line:

// titleParam2 = $STR_f_AISkillSelector_Title_AD;
// valuesParam2[] = {6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24,99};
// defValueParam2 = 6;
// textsParam2[] = {$STR_f_AISkillSelector_Option06, ...

Sides (resistance and civilian) are defined as friendly or enemy to BLUFOR using two lines
in the init.sqf file. In the version of the file init.sqf that comes with BAS f, the default
option is for resistance and civilian to to be friendly to BLUFOR.

To change the friendly / enemy designations for resistance and civilian:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – AI Skill Selector (Attack & Defend Version)

2. Edit the following line, changing the value f_isFriendlyToBLU_RES to 0 if you want the
resistance side to be an enemy of BLUFOR, or 1 if you it to be friendly:

f_isFriendlyToBLU_RES = 1;

3. Edit the following line, changing the value f_isFriendlyToBLU_CIV to 0 if you want the
civilian side to be an enemy of BLUFOR, or 1 if you it to be friendly:

f_isFriendlyToBLU_CIV = 1;

To change the default selection:

1. Open the file description.ext and look for the code segment entitled:

// BAS f - AI Skill Selector (Attack & Defend Version)

2. Within the same code segment, look for the line:

defValueParam2 = 6;

3. Change 6 for a number between 6 and 24 that is used in the table above.

A key limitation of this component is that it cannot automatically set the skill level of units
which are created dynamically during the mission (for example, if you use a script to generate
enemies or civilians dynamically). However, you can ensure that the skill level of any
dynamically-created units is set according to the same level as other units on their side by
inserting some code in their Init: line. The code required is different for each side:

 For west (BLUFOR) units, use: this setSkill f_skillBLU;
 For resistance (Independent) units, use: this setSkill f_skillRES;
 For east (OPFOR) units, use: this setSkill f_skillOPF;
 For civilian units, use: this setSkill f_skillCIV;

AUTHORISED CREW CHECK

One way of encouraging players to stick to their designated roles is to prevent certain units
from acting as pilots / drivers / gunners or commanders of specialist vehicles such as tanks
and aircraft.

The Authorised Crew Check component is a quick and easy way of ensuring that only players
in selected slots are able to act as crew-members on particular vehicles. If a player that is not
authorised to act as crew attempts to get in as anything except cargo (passenger), s/he will be
automatically ejected with a warning message.

Additionally, the warning message has also been translated into English, Czech, German,
Polish, Spanish, French and Russian (using text strings contained in the file
stringtable.csv); players using copies of ArmA released in those languages will
automatically see the translated warning.

To create this functionality segments of code are placed in the following files:

 init.sqf
 stringtable.csv
 f\common\f_isAuthorisedCrew.sqf

To activate this component for the a vehicle:

1. In the ArmA editor, select the vehicle and ensure it has a name in the Name: field (such
as MyTank).

2. Still in the editor, make sure the unit (soldier) or units (soldiers) that you want to have

as the authorised crew-members also have unique entries in their Name: field (such as
MyDriver, MyCommander and MyGunner).

3. Open the file init.sqf and look for the code segment entitled:

// BAS f - Authorised Crew Check

4. Edit the following line, removing the // at the start, replacing VehicleName with the
name of the vehicle, and the array [UnitName1,UnitName2] with an array containing
the names of the authorised crew members.

// VehicleName addEventhandler ["GetIn", {[_this,[UnitName1,UnitName2]]
execVM "f\common\f_isAuthorisedCrew.sqf"}];

For example, to ensure that only MyDriver, MyCommander and MyGunner can act as the
crew of MyTank, change the line to:

MyTank addEventhandler ["GetIn", {[_this,[MyDriver,MyCommander,MyGunner]]
execVM "f\common\f_isAuthorisedCrew.sqf"}];

5. To apply this feature to other vehicle repeat steps 1-4.

There is a known limitation with this feature: if a unit enters a vehicle as a passenger, s/he can
sometimes use the action menu to move to a pilot / driver / commander / gunner position.

AUTHORISED CREW TYPE CHECK
The Authorised Crew Type Check component works in exactly the same way as the Authorised
Crew Check component, but instead of checking for named player slots, it checks to see if the
player is of a certain type (such as pilot or armoured vehicle crew).

To create this functionality segments of code are placed in the following files:

 init.sqf
 stringtable.csv
 f\common\f_isAuthorisedCrewType.sqf

To activate this component for the a vehicle:

1. In the ArmA editor, select the vehicle and ensure it has a name in the Name: field (such
as MyTank).

2. Still in the editor, make sure the unit (soldier) or units (soldiers) that you want to have
as the authorised crew-members are of types such as Pilot or Crew.

3. Open the file init.sqf and look for the code segment entitled:

// BAS f - Authorised Crew Type Check

4. Edit the following line, removing the // at the start, replacing VehicleName with the
name of the vehicle, and the array ["UnitType1","UnitType2"] with an array
containing the unit types authorised to act as crew.

// VehicleName addEventhandler ["GetIn", {[_this,
["UnitType1","UnitType2"]] execVM "f\common\f_isAuthorisedCrewType.sqf"}];

For example, to ensure that only units of the type SoldierWCrew can act as the crew of
MyTank, change the line to:

MyTank addEventhandler ["GetIn", {[_this,["SoldierWCrew"]] execVM
"f\common\f_isAuthorisedCrewType.sqf"}];

Note: Remember to put "" around the unit types.

5. To apply this feature to other vehicle repeat steps 1-4.

Common unit types that you may want to use are:

Type Description
SoldierWCrew BLUFOR armoured vehicle crew.

SoldierWPilot BLUFOR pilot.

SoldierGCrew Resistance armoured vehicle crew.

SoldierGPilot Resistance pilot.

SoldierECrew OPFOR armoured vehicle crew.

SoldierEPilot OPFOR pilot.

There is a known limitation with this feature: if a unit enters a vehicle as a passenger, s/he can
sometimes use the action menu to move to a pilot / driver / commander / gunner position.

KEGETYS SPECTATOR SCRIPT FOR ARMA

The spectator script component allows dead players to spectate other (still living) players,
replacing the default seagull mode. Features include:

 Free, chase, flyby, top-down and 1st person cameras
 Automatic display of all units in the mission
 Camera control with mouse and keyboard shortcuts
 Unit tags (Colored dots above units) and 3D bullet path indicators (with client addon)
 Night vision and missile camera
 Drop camera feature (Mouse + WSAD keys to move camera)
 Clickable minimap and full screen map with markers indicating unit positions and

weapons fire
 Butterfly mode

To create this functionality segments of code are placed in the following files:

 description.ext
 init.sqf
 onPlayerRespawnAsSeagull.sqs (onPlayerRespawnAsSeagull.xxx)
 f\common\f_spect\common.hpp
 f\common\f_spect\specta.sqf
 f\common\f_spect\specta_events.sqf
 f\common\f_spect\specta_init.sqf
 f\common\f_spect\spectating.hpp

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Kegetys Spectator Script for ArmA

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\f_spect\specta_init.sqf";

3. In the mission folder, change the name of the file:

onPlayerRespawnAsSeagull.xxx

to:

onPlayerRespawnAsSeagull.sqs

Note: This is an SQS file, not an SQF file.

Restricting visible sides (Coop missions)
By default, the spectator script will track all units in the mission. If you would like to restrict
which sides are tracked (i.e. visible), follow these steps:

1. Open the file f\common\f_spect\specta_init.sqf and edit the following line,
removing the // at the start:

// KEGsShownSides = [west, east, resistance, civilian];

2. Remove the names of the sides which you do not want visible. For example, if you only
want it to be possible for the dead players to see west and civilian units, change the
line to:

KEGsShownSides = [west, civilian];

Restricting visible sides (Attack & Defend missions)
If you would like to restrict which sides are tracked (i.e. visible), based on the side of the
player, follow these steps:

1. Open the file f\common\f_spect\specta_init.sqf and find the following lines,
removing the // at the start of each one:

// if (side player == west) then {KEGsShownSides = [west];};
// if (side player == east) then {KEGsShownSides = [east];};
// if (side player == resistance) then {KEGsShownSides = [resistance];};
// if (side player == civilian) then {KEGsShownSides = [civilian];};

DYNAMIC VIEW DISTANCE
The view distance used by a player can have a dramatic effect on two aspects of ArmA:

 Performance – high view distances will cause low-powered graphics cards to really
struggle, and result in poor FPS; low view distances have the opposite effect.

 Player effectiveness – a low view distance will hinder the effectiveness of a player in the
role of fast jet pilot, whereas for a player in an infantry role this would not be an issue.

The Dynamic View Distance component allows the mission designer to set a standard view
distance for all players, with special view distances for players in the roles of pilots or gunners
for helicopters and fixed-wing aircraft, or commanders, drivers and gunners in tanks. The
component automatically switches a player's view distance to the appropriate value, depending
on whether s/he is in a pilot / gunner / commander / driver slot.

Example: a player's view distance will be normal when s/he is standing on the ground next to
a fast jet, but will be changed to a special value the moment s/he gets into the pilot seat – and
then changed back to normal when s/he dismounts again.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\f_setLocalVars.sqf
 f\common\f_addSetViewDistanceEHs.sqf
 f\common\f_setViewDistanceGetIn.sqf
 f\common\f_setViewDistanceGetOut.sqf

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Dynamic View Distance

2. Edit the following line, changing the value of f_viewDistance_default to the desired
view distance for units which are not pilots or gunners in helicopters or planes, such as
ground infantry or passengers (a default suggested value is 1250):

f_viewDistance_default = 1250;

3. Edit the following line, changing the value of f_viewDistance_tank to the desired view
distance for units which are commanders, drivers or gunners in a tank (a default
suggested value is 2000):

f_viewDistance_tank = 2000;

4. Edit the following line, changing the value of f_viewDistance_rotaryWing to the
desired view distance for units which are pilots or gunners in helicopters (a default
suggested value is 2500):

f_viewDistance_rotaryWing = 2500;

5. Edit the following line, changing the value of f_viewDistance_fixedWing to the desired
view distance for units which are pilots or gunners in planes (a default suggested value
is 5000):

f_viewDistance_fixedWing = 5000;

6. Edit the following line, removing the // at the start:

// [] execVM "f\common\f_addSetViewDistanceEHs.sqf";

There is a known limitation with this feature: if a unit enters a vehicle as a passenger, s/he can
sometimes use the action menu to move to a pilot / driver / commander / gunner position
without having his/her view distance changed.

MULTI-SIDE BRIEFING FILE TEMPLATE
For team vs. team missions, it is often useful to present different mission briefings to each
side. This is easy to accomplish, but requires the use of a slightly different version of the
briefing.html template.

The BAS f framework comes with a template briefing.html file designed for briefing different
sides. To use this template:

1. Delete the file briefing.html in the mission folder.

2. Change the name of the file briefing_bySide.html to briefing.html

To create your briefing, open up the file briefing.html and complete the following sections:

 Notes - BLUFOR (if you have playable BLUFOR slots)
 Notes - OPFOR (if you have playable OPFOR slots)
 Notes - Resistance (if you have playable Resistance slots)
 Notes – Civilian (if you have playable Civilian slots)
 Plan - BLUFOR (if you have playable BLUFOR slots)
 Plan - OPFOR (if you have playable OPFOR slots)
 Plan - Resistance (if you have playable Resistance slots)
 Plan – Civilian (if you have playable Civilian slots)
 Debriefings
 Mission Credits

Throughout the new version of the briefing.html file the sections which you should edit have
been labelled:

*** Insert [specific information] here. ***

Replace the text starting and ending with *** using your own content (delete the *** as well).

In the last section, Mission Credits, the suggested format for mission version is n-n-n (DD
MMM CCYY). An example of a mission that has reached version 1.7 on the 30th of April, 2007,
would be: 1-7-0 (30 APR 2007).

The format of the briefing.html file is similar to HTML, although it is not exactly the same.
Only a few HTML tags will work, but here are the key ones:

 - Will give a carriage return (new line).

 - Will give a blank line between paragraphs.

Text - Will create a link that, when clicked, will
automatically centre the map over the marker named mkrName (be sure to name the
marker in the ArmA editor).

If you would like to make the briefing available in more than one language, follow these steps:

1. Complete the original version of the briefing.html file in English, and save it.

2. Make a copy of the file, and rename it:

briefing.german.html

This will create a version of the file that is opened automatically by German language
versions of ArmA.

3. Open the file briefing.german.html and translate your inserted texts into German.

4. Repeat steps 2 and 3 for the languages: Czech, Polish, French, Spanish, Italian,
French and Russian. Note that if a non-English version of ArmA cannot find a copy of
the briefing.YourLanguage.html file in its language, it will use the file
briefing.html (which should be in English).

Please note that if you are creating a version in Russian, you must ensure that the file is saved
in Unicode format.

Side-specific objectives
Each objective has a unique number assigned to it in a briefing.html file:

*** Insert Resistance objective #5 here. ***</p>

In the above example, the objective has the index number 17. In the briefing_bySide.html
file you will notice that the example objectives for BLUFOR are numbered 1-6, the ones for
OPFOR 7-12 etc. This is because objectives are not naturally side-specific – unless an objective
is specially hidden it will be visible to players on all sides.

To have different objectives for each side, you must use different index numbers for each
side's objectives, and then hide objectives for the player's enemy side(s). The Hide Enemy
Objectives optional component of BAS f is designed to do exactly that.

HIDE ENEMY OBJECTIVES
Due to the way the ArmA reads the briefing.html file, some additional work is required to
ensure that a player only sees the objectives for his/her side. The Hide Enemy Objectives
component is designed to work with the Multi-Side Briefing File Template optional component
included with BAS f (see previous section of this manual). The Hide Enemy Objectives
component automatically senses the side of the player, and hide all other sides' objectives.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\f_hideEnemyObjectives.sqf

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – Hide Enemy Objectives

2. Edit the following line, ensuring the array f_objectives_BLU contains all the BLUFOR
objective index numbers (each number must be surrounded by "" marks):

f_objectives_BLU = ["1","2","3","4","5","6"];

3. Edit the following line, ensuring the array f_objectives_OPF contains all the OPFOR
objective index numbers (each number must be surrounded by "" marks):

f_objectives_OPF = ["7","8","9","10","11","12"];

4. Edit the following line, ensuring the array f_objectives_RES contains all the Resistance
objective index numbers (each number must be surrounded by "" marks):

f_objectives_RES = ["13","14","15","16","17","18"];

5. Edit the following line, ensuring the array f_objectives_CIV contains all the Civilian
objective index numbers (each number must be surrounded by "" marks):

f_objectives_CIV = ["19","20","21","22","23","24"];

6. Edit the following line, removing the // at the start:

// #include "f\common\f_hideEnemyObjectives.sqf"

Note: There is no ; at the end of this line (because it is an #include).

CASUALTIES CAP
The Casualties Cap component automatically senses the percentage of casualties taken by a
group (or several groups), and triggers an ending when that threshold is reached.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\server\f_endOnCasualtiesCap.sqf

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – Casualties Cap

2. Edit the following line, removing the // at the start:

// [[f_GrpBLU11A],100,1] execVM "f\server\f_endOnCasualtiesCap.sqf";

3. On the same line, replace f_GrpBLU11A with the name of the group you want to
monitor, for example (group is called MyGrp1):

// [[MyGrp1],100,1] execVM "f\server\f_endOnCasualtiesCap.sqf";

If you want to monitor more than one group, ensure they are separated by a comma,
for example (groups are called MyGrp1 and MyGrp2):

// [[MyGrp1,MyGrp2],100,1] execVM "f\server\f_endOnCasualtiesCap.sqf";

4. On the same line, replace 100 with the percentage of casualties the group (or groups)
will take in order to trigger the desired ending. For example (percentage is 30%):

// [[MyGrp1],30,1] execVM "f\server\f_endOnCasualtiesCap.sqf";

5. On the same line, replace 1 with the desired ending. For example (ending is 3):

// [[MyGrp1],30,3] execVM "f\server\f_endOnCasualtiesCap.sqf";

This component is very useful in Attack & Defend missions, as it can be run for more than one
group (or several groups) at the same time, triggering a different ending for each. For
example, if you are using the ShackTactical: Baseline Mission File Template component, you
might want to use these lines to trigger endings 1 and 2 depending on which side (BLUFOR or
OPFOR) is the first to take 30% casualties (note line-wrapping):

[[GrpBLU_1Plt_PltHQ,GrpBLU_1Plt_Alpha,GrpBLU_1Plt_A1,GrpBLU_1Plt_A2,GrpBLU
_1Plt_A3,GrpBLU_1Plt_Bravo,GrpBLU_1Plt_B1,GrpBLU_1Plt_B2,GrpBLU_1Plt_B3,Gr
pBLU_1Plt_Charlie,GrpBLU_1Plt_C1,GrpBLU_1Plt_C2,GrpBLU_1Plt_C3,GrpBLU_1Plt
_Delta,GrpBLU_1Plt_D1,GrpBLU_1Plt_D2,GrpBLU_1Plt_D3,GrpBLU_1Plt_Echo,GrpBL
U_1Plt_E1,GrpBLU_1Plt_E2,GrpBLU_1Plt_E3,GrpBLU_1Plt_Fox,GrpBLU_1Plt_F1,Grp
BLU_1Plt_F2,GrpBLU_1Plt_F3],30,1] execVM
"f\server\f_endOnCasualtiesCap.sqf";
[[GrpOPF_1Plt_PltHQ,GrpOPF_1Plt_Alpha,GrpOPF_1Plt_A1,GrpOPF_1Plt_A2,GrpOPF
_1Plt_A3,GrpOPF_1Plt_Bravo,GrpOPF_1Plt_B1,GrpOPF_1Plt_B2,GrpOPF_1Plt_B3,Gr
pOPF_1Plt_Charlie,GrpOPF_1Plt_C1,GrpOPF_1Plt_C2,GrpOPF_1Plt_C3,GrpOPF_1Plt
_Delta,GrpOPF_1Plt_D1,GrpOPF_1Plt_D2,GrpOPF_1Plt_D3,GrpOPF_1Plt_Echo,GrpOP
F_1Plt_E1,GrpOPF_1Plt_E2,GrpOPF_1Plt_E3,GrpOPF_1Plt_Fox,GrpOPF_1Plt_F1,Grp
OPF_1Plt_F2,GrpOPF_1Plt_F3],30,2] execVM
"f\server\f_endOnCasualtiesCap.sqf";

CASUALTIES CAP (ADVANCED)
The Casualties Cap (Advanced) component automatically senses the percentage of casualties
taken by a group (or several groups), and then executes custom code (written by the mission
designer) when that threshold is reached.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\server\f_casualtiesCapAdv.sqf

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – Casualties Cap (Advanced)

2. Edit the following line, removing the // at the start:

// [[f_GrpBLU11A],100] execVM "f\server\f_casualtiesCapAdv.sqf";

3. On the same line, replace f_GrpBLU11A with the name of the group you want to
monitor, for example (group is called MyGrp1):

// [[MyGrp1],100] execVM "f\server\f_casualtiesCapAdv.sqf";

If you want to monitor more than one group, ensure they are separated by a comma,
for example (groups are called MyGrp1 and MyGrp2):

// [[MyGrp1,MyGrp2],100] execVM "f\server\f_casualtiesCapAdv.sqf";

4. On the same line, replace 100 with the percentage of casualties the group (or groups)
will take in order to trigger the custom code. For example (percentage is 30%):

// [[MyGrp1],30] execVM "f\server\f_casualtiesCapAdv.sqf";

5. Open the file f\server\f_casualtiesCapAdv.sqf and look for the code segment
entitled:

// CUSTOM CODE

6. Replace the following line with your custom code, removing the // at the start:

// Replace me with your custom code (remember to delete the "//"
characters).;

Your custom code can be 1 or more lines; example, if you wanted to set some variables
and trigger another script, your custom code might be:

_myVariableA = 1;
_myVariableB = 0;
[] execVM "anotherScript.sqf";

Rather than forcing a specific ending (like the original Casualties Cap component), this
component allows the mission designer to accomplish other tasks when the casualties
threshold is met – such as setting variables, or triggering other scripts.

NOTE: This component only runs on the server, not on the clients, which means the mission
designer's custom code is only executed on the server.

AUTOMATIC BODY REMOVAL (FIFO VERSION)
The Automatic Body Removal component described in section A of this manual uses a
technique which adds an event handler to each unit; when the unit is killed, a script is run that
will pause for a certain amount of time, then delete the body. One drawback to this approach
is that bodies can start to disappear in front of players, which is not very sophisticated.

Another method for removing bodies is called FIFO – which stands for “First In, First Out”. This
approach also adds an event handler to each unit; however, when the unit is killed, it is added
to an array containing all the dead bodies. As the array fills up, the first unit to enter it is
removed from the mission (imagine a conveyor belt). The FIFO approach means that,
hopefully, when a body disappears, it is less likely to be visible to players.

To further ensure that dead bodies do not disappear in front of players, the FIFO approach also
lets the mission maker define how far a body must be from the player before it is removed.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\server\f_abrFIFO.sqf
 f\common\f_setLocalVars.sqf
 f\common\f_addRemoveBodyEH.sqf
 f\common\f_abrAddToFIFO.sqf

To activate this component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - Automatic Body Remover

2. Delete everything from the above line (including the line itself), to the next instance of:

// ===

3. Look for the code segment entitled:

// BAS f - Automatic Body Remover (FIFO Version)

4. Edit the following lines, removing the // at the start of each:

// f_abrFIFOlength = 30;
// f_abrDistance = 150;
// f_abrFIFOmaxLength = 50;
// f_doNotRemoveBodies = [];
// ["fifo"] execVM "f\common\f_addRemoveBodyEH.sqf";
// [] execVM "f\server\f_abrFIFO.sqf";

By default, this component is configured to starting removing dead bodies after 30 units have
been been killed (30 is the size of the FIFO array). Bodies will also not be removed until they
are 150m from the nearest player, unless the FIFO array contains 50 or more dead bodies – in
which case the removal will commence regardless. Additionally, all groups (including player
groups) will have their bodies removed - there are no exceptions by default.

To change these default settings:

1. Edit the following line, changing the value of f_abrFIFOlength = 30; to the desired
number of bodies which much be in the FIFO array before a body is deleted:

f_abrFIFOlength = 30;

2. Edit the following line, changing the value of f_abrDistance = 150; to the desired
distance (in metres) a body must be from the nearest player before it is deleted:

f_abrDistance = 150;

3. Edit the following line, changing the value of f_abrFIFOmaxLength = 50; to the desired
number of bodies which much be in the FIFO array for bodies to start being removed
regardless of distance to the nearest player:

f_abrFIFOmaxLength = 50;

Because the gear on a dead body is also deleted, you may not want to apply this feature to
some groups of soldiers (such as the players' group). To make a group exempt from this
feature, and never delete its units' bodies:

1. Edit the following line, changing the value of f_doNotRemoveBodies from [] to include
the name of the group(s) you want to exempt.

f_doNotRemoveBodies = [];

For example, to make the default players' group (which is named f_GrpBLU11A by
default in BAS f) exempt from this feature, change the line to:

f_doNotRemoveBodies = [f_GrpBLU11A];

To make more than one group exempt, use commas to separate the group names:

f_doNotRemoveBodies = [f_GrpBLU11A,GroupTwo,GroupThree];

A key limitation of this component is that it cannot automatically add the event handler to
units which are created dynamically during the mission (for example, if you use a script to
generate enemies or civilians dynamically). However, you can add the event handler by
ensuring that any dynamically-created units have the following code in their Init: line:

this addEventHandler ["killed",
{

if (local BAS_Server_Logic) then
{

f_abrFIFO = f_abrFIFO + [_this select 0];
} else
{

_this execVM "f\common\f_abrAddToFIFO.sqf"
};

}];

CONFIGURABLE PLAYABLE SLOTS (ACE VERSION)
By default, a mission created with BAS f contains 1 BLUFOR player group composed of
standard ArmA units (see Configurable Playable Slots component). The Configurable Playable
Slots (ACE Version) component replaces all standard units with ACE versions (US Army ACU),
but in all other respects is identical to the core component on which it is based.

To use this optional component, before you begin to make your own mission:

1. Delete the file mission.sqm in the mission folder.

2. Change the name of the file mission_ACE.sqm to mission.sqm

3. Follow the steps in the section of this manual entitled “Naming Your Mission”.

SECTION C

SHACKTACTICAL OPTIONAL COMPONENTS
ShackTactical is an international MP gaming community that focuses on ArmA (and,
historically, OFP and the WGL mod). Find out more about ShackTactical at:

http://dslyecxi.com/

The founder of ShackTactical, Dslyecxi, is also the author of “Tactics, Techniques, and
Procedures for Armed Assault”, which is the benchmark guide for ArmA players and clans, and
contains many concepts and ideas which are pertinent to good mission making. Read it at:

http://dslyecxi.com/armattp.html

The following mini-guides and optional components are intended to provide your mission with
extra features which will help it conform to the ideas and standards used by ShackTactical:

 ShackTactical: Baseline Mission File Template
 ShackTactical: Group IDs
 ShackTactical: Markers
 ShackTactical: Markers (Addon Version)
 ShackTactical: Fireteam Markers
 ShackTactical: Fireteam Markers (Addon Version)
 ShackTactical: Briefing File Template (Coop Version)
 ShackTactical: Briefing File Template (Attack & Defend Version)
 ShackTactical: CoC CEX Support
 ShackTactical: kevb0's Wounding Script
 ShackTactical: kevb0's Outtro Script
 ShackTactical: kevb0's Assign Gear Script
 ShackTactical: ShackTac f

http://dslyecxi.com/armattp.html
http://dslyecxi.com/

SHACKTACTICAL: BASELINE MISSION FILE TEMPLATE
ShackTactical missions use a regular platoon structure for organising player-controlled troops.
As “Tactics, Techniques, and Procedures for Armed Assault” describes:

“The ShackTac Platoon is based off of a standard USMC rifle platoon, with
some minor differences. It works off of the principle that any person in
the platoon should have to worry about three other people at most - the
platoon commander deals with the three squad leaders, the squad leaders
deal with their three fireteam leaders, and each fireteam leader deals
with the three other players in his fireteam. Commanding three people is
ideal, and since that occurs at all levels of leadership in the platoon, the
structure is a very flexible and relatively easy one to work with. There is
good reason why the US Marines use this method.

Our Platoon ends up being 46 players strong, and can be fleshed out with
AI any time that there are less than that many people on the server.
Alternatively, the platoon can be cut down to a section (two squads) if
there are not enough people to fill the whole thing and AI is not desired.

The platoon consists of four main elements - the command element and
three rifle squads, Alpha, Bravo, and Charlie. Each squad has three
fireteams in it, labeled simply as 1st, 2nd, and 3rd fireteam, and each
fireteam is comprised of three soldiers and one fireteam leader.”

It is reasonably time-consuming for a mission designer to recreate this platoon structure –
especially if the mission is attack & defend (with players on both sides). Additionally, playable
slots in ShackTactical missions also have useful descriptions such as “1Plt Charlie Squad
Leader” and “2Plt A3 Fireteam Leader”, which can also be time-consuming to enter.

The ShackTactical: Baseline Mission File Template provides the mission designer with pre-
placed BLUFOR, OPFOR and Resistance platoons (using ACE units and weapons) – all of which
conform to the ShackTactical structure, naming and baseline equipment conventions. Please
note that each pre-placed platoon is enlarged with the addition of Delta, Echo and Fox squads.

To use this optional component, before you begin to make your own mission:

1. Delete the file mission.sqm in the mission folder.

2. Decide what uniforms you would like BLUFOR troops to wear, as you have a choice
between MARPAT and MARPAT D. For each uniform variant there is a separate
mission.sqm file, as follows:

 mission_ShackTac_ACE_MARPAT_D.sqm
 mission_ShackTac_ACE_Woodland.sqm

For the remainder of these instructions, let us assume you choose to use MARPAT D.

3. Change the name of the file mission_ShackTac_ACE_MARPAT_D.sqm to mission.sqm

4. Delete the file mission_ShacTac_ACE_MARPAT.sqm

5. Follow the steps in the section of this manual entitled “Naming Your Mission”.

6. Delete the platoons and / or squads which you do not need for your mission.

Each platoon is arranged as follows:

Group GroupName * Units Notes
Platoon HQ GrpXXX_1Plt_PltHQ 1Plt PltHQ Platoon Commander Has binoculars and radio

1Plt PltHQ Rifleman

1Plt PltHQ Rifleman

1Plt PltHQ Medic

Alpha Squad GrpXXX_1Plt_Alpha 1Plt Alpha Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Alpha Squad Medic Has smoke

Alpha Fireteam 1 GrpXXX_1Plt_A1 1Plt A1 Fireteam Leader Grenadier, has smoke and
radio

1Plt A1 Automatic Rifleman

1Plt A1 Assistant Automatic Rifleman Has MG ammunition

1Plt A1 Rifleman

Alpha Fireteam 2 GrpXXX_1Plt_A2 1Plt A2 Fireteam Leader Grenadier, has smoke and
radio

1Plt A2 Automatic Rifleman

1Plt A2 Assistant Automatic Rifleman Has MG ammunition

1Plt A2 Rifleman

Alpha Fireteam 3 GrpXXX_1Plt_A3 1Plt A3 Fireteam Leader Grenadier, has smoke and
radio

1Plt A3 Automatic Rifleman

1Plt A3 Assistant Automatic Rifleman Has MG ammunition

1Plt A3 Rifleman

Bravo Squad GrpXXX_1Plt_Bravo 1Plt Bravo Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Bravo Squad Medic Has smoke

Bravo Fireteam 1 GrpXXX_1Plt_B1 1Plt B1 Fireteam Leader Grenadier, has smoke and
radio

1Plt B1 Automatic Rifleman

1Plt B1 Assistant Automatic Rifleman Has MG ammunition

1Plt B1 Rifleman

Bravo Fireteam 2 GrpXXX_1Plt_B2 1Plt B2 Fireteam Leader Grenadier, has smoke and
radio

1Plt B2 Automatic Rifleman

1Plt B2 Assistant Automatic Rifleman Has MG ammunition

1Plt B2 Rifleman

Bravo Fireteam 3 GrpXXX_1Plt_B3 1Plt B3 Fireteam Leader Grenadier, has smoke and
radio

1Plt B3 Automatic Rifleman

1Plt B3 Assistant Automatic Rifleman Has MG ammunition

1Plt B3 Rifleman

Charlie Squad GrpXXX_1Plt_Charlie 1Plt Charlie Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Charlie Squad Medic Has smoke

Charlie Fireteam 1 GrpXXX_1Plt_C1 1Plt C1 Fireteam Leader Grenadier, has smoke and
radio

1Plt C1 Automatic Rifleman

1Plt C1 Assistant Automatic Rifleman Has MG ammunition

1Plt C1 Rifleman

Charlie Fireteam 2 GrpXXX_1Plt_C2 1Plt C2 Fireteam Leader Grenadier, has smoke and
radio

1Plt C2 Automatic Rifleman

1Plt C2 Assistant Automatic Rifleman Has MG ammunition

1Plt C2 Rifleman

Charlie Fireteam 3 GrpXXX_1Plt_C3 1Plt C3 Fireteam Leader Grenadier, has smoke and
radio

1Plt C3 Automatic Rifleman

1Plt C3 Assistant Automatic Rifleman Has MG ammunition

1Plt C3 Rifleman

Delta Squad GrpXXX_1Plt_Delta 1Plt Delta Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Delta Squad Medic Has smoke

Delta Fireteam 1 GrpXXX_1Plt_D1 1Plt D1 Fireteam Leader Grenadier, has smoke and
radio

1Plt D1 Automatic Rifleman

1Plt D1 Assistant Automatic Rifleman Has MG ammunition

1Plt D1 Rifleman

Delta Fireteam 2 GrpXXX_1Plt_D2 1Plt D2 Fireteam Leader Grenadier, has smoke and
radio

1Plt D2 Automatic Rifleman

1Plt D2 Assistant Automatic Rifleman Has MG ammunition

1Plt D2 Rifleman

Delta Fireteam 3 GrpXXX_1Plt_D3 1Plt D3 Fireteam Leader Grenadier, has smoke and
radio

1Plt D3 Automatic Rifleman

1Plt D3 Assistant Automatic Rifleman Has MG ammunition

1Plt D3 Rifleman

Echo Squad GrpXXX_1Plt_Echo 1Plt Echo Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Echo Squad Medic Has smoke

Echo Fireteam 1 GrpXXX_1Plt_E1 1Plt E1 Fireteam Leader Grenadier, has smoke and
radio

1Plt E1 Automatic Rifleman

1Plt E1 Assistant Automatic Rifleman Has MG ammunition

1Plt E1 Rifleman

Echo Fireteam 2 GrpXXX_1Plt_E2 1Plt E2 Fireteam Leader Grenadier, has smoke and
radio

1Plt E2 Automatic Rifleman

1Plt E2 Assistant Automatic Rifleman Has MG ammunition

1Plt E2 Rifleman

Echo Fireteam 3 GrpXXX_1Plt_E3 1Plt E3 Fireteam Leader Grenadier, has smoke and
radio

1Plt E3 Automatic Rifleman

1Plt E3 Assistant Automatic Rifleman Has MG ammunition

1Plt E3 Rifleman

Fox Squad GrpXXX_1Plt_Fox 1Plt Fox Squad Leader Grenadier, has binoculars,
smoke and radio

1Plt Fox Squad Medic Has smoke

Fox Fireteam 1 GrpXXX_1Plt_F1 1Plt F1 Fireteam Leader Grenadier, has smoke and
radio

1Plt F1 Automatic Rifleman

1Plt F1 Assistant Automatic Rifleman Has MG ammunition

1Plt F1 Rifleman

Fox Fireteam 2 GrpXXX_1Plt_F2 1Plt F2 Fireteam Leader Grenadier, has smoke and
radio

1Plt F2 Automatic Rifleman

1Plt F2 Assistant Automatic Rifleman Has MG ammunition

1Plt F2 Rifleman

Fox Fireteam 3 GrpXXX_1Plt_F3 1Plt F3 Fireteam Leader Grenadier, has smoke and
radio

1Plt F3 Automatic Rifleman

1Plt F3 Assistant Automatic Rifleman Has MG ammunition

1Plt F3 Rifleman

* For the GroupName, substitute BLU, OPF, or RES depending on side.

Note: All units are equipped with NVGs, regardless of rank or role.

SHACKTACTICAL: GROUP IDS
When players use side chat, the name of their squad / group appears at the start of each
message. The default ArmA group names (or IDs) follow the format “1-1-A”, “1-1-B” etc. This
is not very helpful to players in a mission which uses the standard ShackTactical platoon
structure, in which formations have names like “Alpha SL” or “Charlie FireTeam 3”.

The ShackTactical: Group IDs component automatically applies meaningful names to all
standard groups in a mission which uses the ShackTactical: Baseline Mission File Template.
This means that when players use side chat, their messages will start with “1st Plt Alpha SL” or
“1st Plt Charlie FT3” etc. This makes in-game text communications much clearer.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\ShackTac_setGroupIDs.sqf

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – ShackTactical – Group IDs

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\ShackTac_setGroupIDs.sqf";

What players see in side chat
When players use side chat, their comments will be prefixed by the following strings

Group In side chat
Platoon HQ 1st Plt CO

Alpha Squad 1st Plt Alpha SL

Alpha Fireteam 1 1st Plt Alpha FT1

Alpha Fireteam 2 1st Plt Alpha FT2

Alpha Fireteam 3 1st Plt Alpha FT3

Bravo Squad 1st Plt Bravo SL

Bravo Fireteam 1 1st Plt Bravo FT1

Bravo Fireteam 2 1st Plt Bravo FT2

Bravo Fireteam 3 1st Plt Bravo FT3

Charlie Squad 1st Plt Charlie SL

Charlie Fireteam 1 1st Plt Charlie FT1

Charlie Fireteam 2 1st Plt Charlie FT2

Charlie Fireteam 3 1st Plt Charlie FT3

Delta Squad 1st Plt Delta SL

Delta Fireteam 1 1st Plt Delta FT1

Delta Fireteam 2 1st Plt Delta FT2

Delta Fireteam 3 1st Plt Delta FT3

Echo Squad 1st Plt Echo SL

Echo Fireteam 1 1st Plt Echo FT1

Echo Fireteam 2 1st Plt Echo FT2

Echo Fireteam 3 1st Plt Echo FT3

Fox Squad 1st Plt Fox SL

Fox Fireteam 1 1st Plt Fox FT1

Fox Fireteam 2 1st Plt Fox FT2

Fox Fireteam 3 1st Plt Fox FT3

SHACKTACTICAL: MARKERS

If you use the ShackTactical: Baseline Mission File Template you may also want to use the
same marker system employed by ShackTactical. The ShackTactical: Markers component
automatically creates markers which show a player the position of the leaders of all elements
in his/her platoon.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\ShackTac_setLocalMarkers.sqf
 f\common\ShackTac_localMarker.sqf

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – ShackTactical - Markers

2. Edit the following lines, removing the // at the start:

// [] execVM "f\common\ShackTac_setLocalMarkers.sqf"
// ShackTac_requireRadio = 0;

3. If you want markers to only update if the squad / fireteam leader is carrying a radio,
edit the following line, changing the value of ShackTac_requireRadio to 1:

ShackTac_requireRadio = 0;

Note: If you do not use all the pre-placed groups in the ShackTactical: Baseline Mission File
Template, markers for unused groups will not appear.

What BLUFOR, OPFOR and Resistance players see
Markers are used to denote the position of the leaders of all elements in the player's platoon:

Group Marker Shape Marker Colour Marker Text
Platoon HQ Dot (0.7 x 0.6) Yellow PLtHQ

Alpha Squad Dot (0.7 x 0.3) Red ASL

Alpha Fireteam 1 Dot (0.7 x 0.5) Red A1

Alpha Fireteam 2 Dot (0.7 x 0.5) Red A2

Alpha Fireteam 3 Dot (0.7 x 0.5) Red A3

Bravo Squad Dot (0.7 x 0.3) Blue BSL

Bravo Fireteam 1 Dot (0.7 x 0.5) Blue B1

Bravo Fireteam 2 Dot (0.7 x 0.5) Blue B2

Bravo Fireteam 3 Dot (0.7 x 0.5) Blue B3

Charlie Squad Dot (0.7 x 0.3) Green CSL

Charlie Fireteam 1 Dot (0.7 x 0.5) Green C1

Charlie Fireteam 2 Dot (0.7 x 0.5) Green C2

Charlie Fireteam 3 Dot (0.7 x 0.5) Green C3

Delta Squad Dot (0.7 x 0.3) Red DSL

Delta Fireteam 1 Dot (0.7 x 0.5) Red D1

Delta Fireteam 2 Dot (0.7 x 0.5) Red D2

Delta Fireteam 3 Dot (0.7 x 0.5) Red D3

Echo Squad Dot (0.7 x 0.3) Blue ESL

Echo Fireteam 1 Dot (0.7 x 0.5) Blue E1

Echo Fireteam 2 Dot (0.7 x 0.5) Blue E2

Echo Fireteam 3 Dot (0.7 x 0.5) Blue E3

Fox Squad Dot (0.7 x 0.3) Green FSL

Fox Fireteam 1 Dot (0.7 x 0.5) Green F1

Fox Fireteam 2 Dot (0.7 x 0.5) Green F2

Fox Fireteam 3 Dot (0.7 x 0.5) Green F3

What Civilian players see
By default, players in civilian slots (which are usually used for observers) will see markers
denoting the position of the leaders of all elements in all active platoons (BLUFOR, OPFOR and
Resistance). All markers are colour-coded to denote side:

 BLUFOR: Blue
 OPFOR: Red
 Resistance: Green

How the markers update if ShackTac_requireRadio is set to 0
The position of each marker is updated every 6 seconds, if the leader of the element is alive.
If all units in the element die, the marker will remain visible, but its position will not be
updated again.

How the markers update if ShackTac_requireRadio is set to 1
If the ShackTactical: Baseline Mission File Template has been used, by default, the leaders of
each element in a platoon are equipped with a radio (in this build of BAS f the radio is
represented using a 'Laserbatteries' magazine object).

The position of each marker is updated every 6 seconds, if the following conditions are met:

1. The leader of the element is alive.
2. The leader of the element is carrying a radio.

If a leader dies, the marker will remain visible, but its position will not begin to update again
unless the new leader of the element picks up a radio. Note that the new leader does not have
to pick up the radio found on the dead leader's body – any radio will work, since markers are
linked to the group, not specific radio objects.

Note: This component is intended for use on servers which have disabled the default ArmA
map markers for units and vehicles (e.g. the green triangles for each infantryman).

SHACKTACTICAL: MARKERS (ADDON VERSION)

The ShackTactical: Markers (Addon Version) component is identical to the ShackTactical:
Markers component, but is designed to work with the ShackTactical Markers addon. This
automatically creates markers which show a player the position of the leaders of all elements
in his/her platoon.

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\@ShackTac_setLocalMarkers.sqf
 f\common\@ShackTac_localMarker.sqf

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – ShackTactical – Markers (Addon Version)

2. Edit the following lines, removing the // at the start:

// [] execVM "f\common\@ShackTac_setLocalMarkers.sqf"
// ShackTac_requireRadio = 0;

3. If you want markers to only update if the squad / fireteam leader is carrying a radio,
edit the following line, changing the value of ShackTac_requireRadio to 1:
ShackTac_requireRadio = 0;

Note: If you do not use all the pre-placed groups in the ShackTactical: Baseline Mission File
Template, markers for unused groups will not appear.

What BLUFOR, OPFOR and Resistance players see
Markers are used to denote the position of the leaders of all elements in the player's platoon:

Group Marker Shape Marker Colour Marker Text
Platoon HQ Custom Yellow HQ Plt

Alpha Squad Custom Red ASL

Alpha Fireteam 1 Custom Red A1

Alpha Fireteam 2 Custom Red A2

Alpha Fireteam 3 Custom Red A3

Bravo Squad Custom Blue BSL

Bravo Fireteam 1 Custom Blue B1

Bravo Fireteam 2 Custom Blue B2

Bravo Fireteam 3 Custom Blue B3

Charlie Squad Custom Green CSL

Charlie Fireteam 1 Custom Green C1

Charlie Fireteam 2 Custom Green C2

Charlie Fireteam 3 Custom Green C3

Delta Squad Custom Red DSL

Delta Fireteam 1 Custom Red D1

Delta Fireteam 2 Custom Red D2

Delta Fireteam 3 Custom Red D3

Echo Squad Custom Blue ESL

Echo Fireteam 1 Custom Blue E1

Echo Fireteam 2 Custom Blue E2

Echo Fireteam 3 Custom Blue E3

Fox Squad Custom Green FSL

Fox Fireteam 1 Custom Green F1

Fox Fireteam 2 Custom Green F2

Fox Fireteam 3 Custom Green F3

What Civilian players see
By default, players in civilian slots (which are usually used for observers) will see markers
denoting the position of the leaders of all elements in all active platoons (BLUFOR, OPFOR and
Resistance). All markers are colour-coded to denote side:

 BLUFOR: Blue
 OPFOR: Red
 Resistance: Green

How the markers update if ShackTac_requireRadio is set to 0
The position of each marker is updated every 6 seconds, if the leader of the element is alive.
If all units in the element die, the marker will remain visible, but its position will not be
updated again.

How the markers update if ShackTac_requireRadio is set to 1
If the ShackTactical: Baseline Mission File Template has been used, by default, the leaders of
each element in a platoon are equipped with a radio (in this build of BAS f the radio is
represented using a 'Laserbatteries' magazine object).

The position of each marker is updated every 6 seconds, if the following conditions are met:

1. The leader of the element is alive.
2. The leader of the element is carrying a radio.

If a leader dies, the marker will remain visible, but its position will not begin to update again
unless the new leader of the element picks up a radio. Note that the new leader does not have
to pick up the radio found on the dead leader's body – any radio will work, since markers are
linked to the group, not specific radio objects.

Note 1: This component is intended for use on servers which have disabled the default ArmA
map markers for units and vehicles (e.g. the green triangles for each infantryman).

Note 2: This component should NOT be used if you are also using the ShackTactical: CoC CEX
Support component (which has its own markers built in).

SHACKTACTICAL: FIRETEAM MARKERS

If you use the ShackTactical: Baseline Mission File Template and ShackTactical: Markers
component, you may also want to use the ShackTactical: Fireteam Markers component. This
automatically creates markers which show a player the position and orientation of other
soldiers in his/her fireteam (group).

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\ShackTac_setLocalFTMarkers.sqf
 f\common\ShackTac_localFTMarker.sqf

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – ShackTactical – Fireteam Markers

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\ShackTac_setLocalFTMarkers.sqf"

How the markers update
The position of each marker is updated every 3 seconds, if the unit is still alive. If a unit dies,
its marker will be moved to co-ordinates [0,0] on the map, effectively making it invisible.

Note: This component is intended for use on servers which have disabled the default ArmA
map markers for units and vehicles (e.g. the green triangles for each infantryman).

SHACKTACTICAL: FIRETEAM MARKERS (ADDON VERSION)

The ShackTactical: Fireteam Markers (Addon Version) component is identical to the
ShackTactical: Fireteam Markers component, but is designed to work with the ShackTactical
Markers addon. This automatically creates markers which show a player the position and
orientation of other soldiers in his/her fireteam (group).

To create this functionality segments of code are placed in the following files:

 init.sqf
 f\common\@ShackTac_setLocalFTMarkers.sqf
 f\common\@ShackTac_localFTMarker.sqf

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f – ShackTactical – Fireteam Markers (Addon Version)

2. Edit the following line, removing the // at the start:

// [] execVM "f\common\@ShackTac_setLocalFTMarkers.sqf"

How the markers update
The position of each marker is updated every 3 seconds, if the unit is still alive. If a unit dies,
its marker will be moved to co-ordinates [0,0] on the map, effectively making it invisible.

Note: This component is intended for use on servers which have disabled the default ArmA
map markers for units and vehicles (e.g. the green triangles for each infantryman).

SHACKTACTICAL: BRIEFING FILE TEMPLATE (COOP VERSION)
For ShackTactical coop missions, a more structured approach to the briefing is required, one
which follows a convention based loosely on the 'five-paragraph order' format in use with
military organisations such as the USMC and British Army. This is easy to accomplish, but
requires the use of a slightly different version of the briefing.html template.

The BAS f framework comes with a template briefing.html file designed for ShackTactical
coop missions. To use this template:

1. Delete the file briefing.html in the mission folder.

2. Change the name of the file briefing_ShackTac.html to briefing.html

To create your briefing, open up the file briefing.html and complete the following sections:

 Notes
 Plan
 Debriefings
 Situation
 Mission
 Execution
 Administration
 Mission Credits

Throughout the new version of the briefing.html file the sections which you should edit have
been labelled:

*** Insert [specific information] here. ***

Replace the text starting and ending with *** using your own content (delete the *** as well).

In the last section, Mission Credits, the suggested format for mission version is n-n-n (DD
MMM CCYY). An example of a mission that has reached version 1.7 on the 30th of April, 2007,
would be: 1-7-0 (30 APR 2007).

The format of the briefing.html file is similar to HTML, although it is not exactly the same.
Only a few HTML tags will work, but here are the key ones:

 - Will give a carriage return (new line).

 - Will give a blank line between paragraphs.

Text - Will create a link that, when clicked, will
automatically centre the map over the marker named mkrName (be sure to name the
marker in the ArmA editor).

If you would like to make the briefing available in more than one language, follow these steps:

1. Complete the original version of the briefing.html file in English, and save it.

2. Make a copy of the file, and rename it:

briefing.german.html

This will create a version of the file that is opened automatically by German language
versions of ArmA.

3. Open the file briefing.german.html and translate your inserted texts into German.

4. Repeat steps 2 and 3 for the languages: Czech, Polish, French, Spanish, Italian,
French and Russian. Note that if a non-English version of ArmA cannot find a copy of
the briefing.YourLanguage.html file in its language, it will use the file
briefing.html (which should be in English).

Please note that if you are creating a version in Russian, you must ensure that the file is saved
in Unicode format.

SHACKTACTICAL: BRIEFING FILE TEMPLATE (ATTACK & DEFEND
VERSION)
For ShackTactical attack and defend missions, a more structured approach to the briefing is
required, one which follows a convention based loosely on the 'five-paragraph order' format in
use with military organisations such as the USMC and British Army. This is easy to accomplish,
but requires the use of a slightly different version of the briefing.html template.

The BAS f framework comes with a template briefing.html file designed for briefing different
sides in a ShackTactical mission. To use this template:

1. Delete the file briefing.html in the mission folder.

2. Change the name of the file briefing_bySide_ShackTac.html to briefing.html

To create your briefing, open up the file briefing.html and complete the following sections:

 Notes - BLUFOR (if you have playable BLUFOR slots)
 Notes - OPFOR (if you have playable OPFOR slots)
 Notes - Resistance (if you have playable Resistance slots)
 Notes – Civilian (if you have playable Civilian slots)
 Plan - BLUFOR (if you have playable BLUFOR slots)
 Plan - OPFOR (if you have playable OPFOR slots)
 Plan - Resistance (if you have playable Resistance slots)
 Plan – Civilian (if you have playable Civilian slots)
 Situation (BLUFOR) (if you have playable BLUFOR slots)
 Mission (BLUFOR) (if you have playable BLUFOR slots)
 Execution (BLUFOR) (if you have playable BLUFOR slots)
 Administration (BLUFOR) (if you have playable BLUFOR slots)
 Situation (OPFOR) (if you have playable OPFOR slots)
 Mission (OPFOR) (if you have playable OPFOR slots)
 Execution (OPFOR) (if you have playable OPFOR slots)
 Administration (OPFOR) (if you have playable OPFOR slots)
 Situation (Resistance) (if you have playable Resistance slots)
 Mission (Resistance) (if you have playable Resistance slots)
 Execution (Resistance) (if you have playable Resistance slots)
 Administration (Resistance) (if you have playable Resistance slots)
 Situation (Civilian) (if you have playable Civilian slots)
 Mission (Civilian) (if you have playable Civilian slots)
 Execution (Civilian) (if you have playable Civilian slots)
 Administration (Civilian) (if you have playable Civilian slots)
 Debriefings
 Mission Credits

Throughout the new version of the briefing.html file the sections which you should edit have
been labelled:

*** Insert [specific information] here. ***

Replace the text starting and ending with *** using your own content (delete the *** as well).

In the last section, Mission Credits, the suggested format for mission version is n-n-n (DD
MMM CCYY). An example of a mission that has reached version 1.7 on the 30th of April, 2007,
would be: 1-7-0 (30 APR 2007).

The format of the briefing.html file is similar to HTML, although it is not exactly the same.
Only a few HTML tags will work, but here are the key ones:

 - Will give a carriage return (new line).

 - Will give a blank line between paragraphs.

Text - Will create a link that, when clicked, will
automatically centre the map over the marker named mkrName (be sure to name the
marker in the ArmA editor).

If you would like to make the briefing available in more than one language, follow these steps:

1. Complete the original version of the briefing.html file in English, and save it.

2. Make a copy of the file, and rename it:

briefing.german.html

This will create a version of the file that is opened automatically by German language
versions of ArmA.

3. Open the file briefing.german.html and translate your inserted texts into German.

4. Repeat steps 2 and 3 for the languages: Czech, Polish, French, Spanish, Italian,
French and Russian. Note that if a non-English version of ArmA cannot find a copy of
the briefing.YourLanguage.html file in its language, it will use the file
briefing.html (which should be in English).

Please note that if you are creating a version in Russian, you must ensure that the file is saved
in Unicode format.

SHACKTACTICAL: COC CEX SUPPORT
CEX is a sophisticated addon created by Chain of Command (CoC), which allows players to
command complex formations such as platoons, companies and battalions. The troops within
these formations can be both AI and human-playable. It is even possible for humans to play
junior commanding roles – taking command of squads or platoons, whilst another player has
overall command of the complete formation (such as the company or battalion).

For missions created using the ShackTactical: Baseline Mission File Template, you may want to
enable CEX so that humans can command entire platoons, even if not enough human players
are available to fill every slot. The BAS f framework contains template configuration files for
quickly enabling CEX functionality for the standard ShackTactical BLUFOR, OPFOR and
Resistance (RACS) platoons.

To create this functionality segments of code are placed in the following files:

 description.ext
 f\common\@ShackTac_CEX_BLU_Platoon.hpp
 f\common\@ShackTac_CEX_OPF_Platoon.hpp
 f\common\@ShackTac_CEX_RES_Platoon.hpp

To use this optional component:

1. In the ArmA MP Mission editor, make sure you place a game logic of the type CEX
SERVER (which is available from Units >> Game Logic >> CoC).

2. Open the file description.ext and look for the code segment entitled:

// BAS f – ShackTactical – CoC CEX Support

3. Edit the following lines, removing the // at the start of each:

// class CEX
// {

4. To enable CEX for the standard ShackTactical BLUFOR platoon, edit the following line
and remove the // at the start:

// #include "f\common\@ShackTac_CEX_BLU_Platoon.hpp"

To enable CEX for the standard ShackTactical OPFOR platoon, edit the following line and
remove the // at the start:

// #include "f\common\@ShackTac_CEX_OPF_Platoon.hpp"

To enable CEX for the standard ShackTactical Resistance (RACS) platoon, edit the
following line and remove the // at the start:

// #include "f\common\@ShackTac_CEX_RES_Platoon.hpp"

Note: You can enable CEX for all platoons at the same time if you choose (if all three
platoons are to be used in the same mission).

5. Edit the following line, removing the // at the start:

// };

Each of the .hpp files contains the configuration settings and definitions required by CEX, and
has been written to work with the relevant standard ShackTactical platoon as supplied in the
ShackTactical: Baseline Mission Template component. If you decide to make changes to the
platoon's structure or composition you may need to open the relevant .hpp file and make the
appropriate changes (please see the CEX manual for more detail).

Free Look Camera Feature
By default the Free Look camera feature of CEX is enabled for each side (this is very useful for
players commanding a platoon that is 100% AI, or mostly AI). If you wish to change this
setting for a particular platoon (particularly one which is going to be composed of only human
players), open the relevant .hpp file and find the following line:

CamEnabled = 1;

To disable the Free Look camera feature, change this line to:

CamEnabled = 0;

SHACKTACTICAL: KEVB0'S WOUNDING SCRIPT
When a player is wounded, standard ArmA functionality does not simulate effects such as
being stunned or bleeding. kevb0's Wounding Script adds these effects and more:

 When a player is shot, if s/he is not killed instantly s/he will be stunned (during this
time the player cannot move and will suffer effects such as black-outs)

 When stunned there is a chance that the player will drop his/her weapon: 75% if
standing, 50% if crouched, or 25% if prone

 The amount of damage sustained determines how long the player remains stunned
 A medic can revive a stunned player, although the effects (black-outs) will continue for

some time
 Once the player recovers from being stunned, s/he will start to bleed
 Depending on the amount of damage sustained, the bleeding may continue and the

effects become worse over time (eventually the player may die if not treated)
 Bandages (represented by Laser Batteries) can be used to stop the bleeding

To create this functionality segments of code are placed in the following files:

 description.ext
 init.sqf
 f\common\f_woundingScript\bandage.sqf
 f\common\f_woundingScript\bleeding.sqf
 f\common\f_woundingScript\f_woundingScriptSounds.hpp
 f\common\f_woundingScript\mando_getpos.sqf
 f\common\f_woundingScript\wakeup.sqf
 f\common\f_woundingScript\wounded.sqf
 f\common\f_woundingScript\sounds*.ogg

To use this optional component:

1. Open the file init.sqf and look for the code segment entitled:

// BAS f - kevb0's Wounding Script

2. Edit the following lines, removing the // at the start:

// mando_getpos = compile (preprocessFileLineNumbers...
// [player] execVM "f\common\f_woundingScript\wounded.sqf";

3. Open the file description.ext and look for the code segment entitled:

// BAS f - kevb0's Wounding Script

4. Edit the following line, removing the // at the start:

// #include "f\common\f_woundingScript\f_woundingScriptSounds.hpp"

Note: Do not use this component in conjunction with ACE (which has its own system for
wounding and medical care).

SHACKTACTICAL: KEVB0'S OUTTRO SCRIPT
For adversarial missions, determining which side has won may not be as simple as detecting
which is the first to be destroyed. For example: if an attacking force takes an outpost from a
force one-third its size, but loses over half of its troops in the process, the mission designer
may regard that as a defeat (or at least only a very minor victory).

kevb0's Outtro Script provides an easy way to track each side's performance using a points
system for casualties and major objectives. The points earned by each side will determine the
eventual winner, and the degree of victory.

To create this functionality segments of code are placed in the following files:

 f\common\f_outtro.sqf

To use this optional component:

1. Create a trigger which will fire at the point when you want the mission to end; for
example, create a Seized By trigger over a town.

2. In the On Activation field you will need to insert a line of code that looks like this (please
note there is no line-break – all the code should be on one line):

anEnding =
["Side1",pointsperkillside1,Side1Objectivepoints,"Side2",pointsperkillside
2,Side2Objectivepoints,"Whymissionisover",objecttopointcameraat] execVM
"f\common\f_outtro.sqf";

3. The precise composition of the line of code will be up to the mission designer. The
following table provides a guide to each variable:

Variable Type Possible Values
"Side1" String Can be "EAST", "WEST", "RESISTANCE", or "CIVILIAN". It must

be in capital letters and be enclosed by quotation marks.

pointsperkillside1 Number The number of points lost by side #1 for every casualty it
suffers. Must be a number.

Side1Objectivepoints Number The number of points won/lost by side #1 when the mission
ends due to this trigger. Must be a number (it can be positive
or negative).

"Side2" String Can be "EAST", "WEST", "RESISTANCE", or "CIVILIAN". It must
be in capital letters and be enclosed by quotation marks.

pointsperkillside2 Number The number of points lost by side #2 for every casualty it
suffers. Must be a number.

Side2Objectivepoints Number The number of points won/lost by side #1 when the mission
ends due to this trigger. Must be a number (it can be positive
or negative).

"Whymissionisover" String The reason why the mission has ended (due to this trigger).

objecttopointcameraat Object The object which will be targeted by the camera used in the
outtro screen at the end of the mission, which displays each
side's scores and the overall mission result.

Please note that the mission ending called by the script is always #1 (so you may want to
ensure that your text for debriefing #1 in the briefing.html file is appropriate).

Example
A BLUFOR SF Team must clear an town held by OPFOR insurgents. The script is activated using
a "Seized By BLU" trigger placed over the town. The following line of code is placed in the On

Activation field of the trigger (please note there is no line-break):

anEnding = ["WEST",20,50,"EAST",5,-25,"The SF Team Cleared the
town",player] execVM "f\common\f_outtro.sqf";

The SF Team will lose 20 points for each person killed, and gain 50 for the objective (seizing
the town) being completed. The Insurgents will lose 5 for each unit killed, and lose 25 for the
town being lost.

SHACKTACTICAL: KEVB0'S ASSIGN GEAR SCRIPT
Changing the gear for different roles within a ShackTac platoon can become very time-
consuming if using commands entered directly into the INIT field of each unit.
kevb0's Assign Gear Script provides an easy way to quickly and easily assign the correct gear
for all the standard roles in a ShackTac platoon, from commander to rifleman.

To create this functionality segments of code are placed in the following files:

 f\common\@ShackTac_assignGear.sqf

To use this optional component:

1. Enter one of the following lines of code directly into the INIT field of each unit (this can
be at the end of any other commands in the field):

Role Code (no line breaks)
Platoon Commander nul = ["pltco",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Platoon Medic nul = ["pltmedic",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Squad Leader nul = ["sl",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Squad Medic nul = ["squadmedic",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Fireteam Leader nul = ["ftl",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Automatic Rifleman nul = ["ar",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Assistant Automatic Rifleman nul = ["aar",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Antiarmor Specialist nul = ["at",this] execVM

"f\common\@ShackTac_assignGear.sqf";
Rifleman nul = ["rifleman",this] execVM

"f\common\@ShackTac_assignGear.sqf";

SHACKTACTICAL: SHACKTAC F
To speed up the process of creating a mission for use by ShackTactical, a special build of the
BAS f mission template folder has been created for all supported islands; these folders use the
following naming structure:

 ShackTac_f_v1-3-1.Island

This mission template folder differs from the standard BAS f template folder in the following
ways:

 ShackTactical: Mission File
The appropriate ShackTactical mission file (mission_ShackTac_ACE_MARPAT.sqm) has
been renamed to mission.sqm. The original BAS f mission.sqm file has been deleted
from the folder, although the remaining ShacTac mission file(s) remain so you can
choose a different uniforms for BLUFOR troops. You will want to delete all unused
mission.sqm files to reduce overall mission download size.

 ShackTactical: Briefing File Templates
Only ShackTactical briefing file templates (briefing_ShackTac.html and
briefing_bySide_ShackTac.html) are present in folder.

 ShackTactical: Group IDs
This optional feature has been pre-enabled; all groups within the standard
ShackTactical platoons will have the appropriate names in-game.

 ShackTactical: Markers (addons version)
This optional feature has been pre-enabled; all groups within the standard
ShackTactical platoons will have the appropriate markers in-game (note that fireteam
leaders do NOT have to be carrying a 'radio' for the markers to update).

 ShackTactical: Fireteam Markers (addons version)
This optional feature has been pre-enabled; all individuals within the standard
ShackTactical groups will have the appropriate markers in-game (for any human
players in the same group).

 Kegetys' Spectator Script
This optional feature has been pre-enabled; when a player dies s/he will be able to view
units from all sides in spectator mode (but remember: dead men don't talk!).

 BAS f Gear Snippets
This core component has been removed.

SECTION D

LDD KYLLIKKI OPTIONAL COMPONENTS
LDD Kyllikki is an MP gaming community that focuses on ArmA (and, historically, the FDF
Mod). Find out more about LDD Kyllikki at:

http://www.kyllikki.fi/

The following mini-guides and optional components are intended to provide your mission with
extra features which will help it conform to the ideas and standards used by LDD Kyllikki:

 LDD Kyllikki: Baseline Mission File Template (FDF Version)

http://www.kyllikki.fi/

LDD KYLLIKKI : BASELINE MISSION FILE TEMPLATE (FDF VERSION)
LDD Kyllikki missions use a regular company structure for organising player-controlled FDF
troops. It is reasonably time-consuming for a mission designer to recreate this company
structure, especially if playable slots also have useful descriptions such as “JgrPlt 1 JJ (Officer)”
and “MJgrPlt 1 Rk4 (Soldier)”, which can also be time-consuming to enter.

The LDD Kyllikki: Baseline Mission File Template (FDF Version) provides the mission designer
with a pre-placed RDF (Resistance) company (using FDF units and weapons) which conforms
to the LDD Kyllikki structure, naming and baseline equipment conventions.

To use this optional component, before you begin to make your own mission:

1. Delete the file mission.sqm in the mission folder.

2. Change the name of the file mission_LDDK_FDF.sqm to mission.sqm

3. Follow the steps in the section of this manual entitled “Naming Your Mission”.

4. Delete the platoons and / or squads which you do not need for your mission.

The company is arranged as follows:

HQ Platoon

Group GroupName Units Notes
HQ Squad GrpRES_HQPlt_HQ HQPlt HQ Kpääl (Officer)

HQPlt HQ Lääkm (Medic)

HQPlt HQ Lääkm (Medic)

HQPlt HQ TkAmp (Sniper)

HQPlt HQ TkAmp (Sniper)

HQPlt HQ Lent (Pilot)

HQPlt HQ Lent (Pilot)

HQPlt HQ Lent (Pilot)

Sissi Squad GrpRES_HQPlt_Sissi HQPlt Sissi RJ (Officer)

HQPlt Sissi RvaraJ (Soldier)

HQPlt Sissi Sissi1 (Soldier)

HQPlt Sissi Sissi2 (Soldier)

HQPlt Sissi Sissi2 (Soldier)

Jaeger Platoon

Group GroupName Units Notes
Jaeger Squad 1 GrpRES_JgrPlt_1 JgrPlt 1 JJ (Officer)

JgrPlt 1 RvaraJ (Asst. Squad Leader)

JgrPlt 1 Rk1 (Machine Gunner Asst.)

JgrPlt 1 Pst1 (AT Soldier)

JgrPlt 1 Kk (Machine Gunner)

JgrPlt 1 Rk2 (Soldier)

JgrPlt 1 Pst2 (Heavy AT Soldier)

JgrPlt 1 Rk3 (Grenadier)

Jaeger Squad 2 GrpRES_JgrPlt_2 JgrPlt 2 RJ (Squad Leader)

JgrPlt 2 RvaraJ (Asst. Squad Leader)

JgrPlt 2 Rk1 (Machine Gunner Asst.)

JgrPlt 2 Pst1 (AT Soldier)

JgrPlt 2 Kk (Machine Gunner)

JgrPlt 2 Rk2 (Soldier)

JgrPlt 2 Pst2 (Heavy AT Soldier)

JgrPlt 2 Rk3 (Grenadier)

Mechanised Jaeger Platoon

Group GroupName Units Notes
Mechanised Jaeger
Squad 1

GrpRES_MJgrPlt_1 MJgrPlt 1 JJ (Officer)

MJgrPlt 1 RvaraJ (Asst. Squad Leader)

MJgrPlt 1 Rk1 (Machine Gunner Asst.)

MJgrPlt 1 Pst1 (AT Soldier)

MJgrPlt 1 Kk (Machine Gunner)

MJgrPlt 1 Rk2 (Soldier)

MJgrPlt 1 Pst2 (Heavy AT Soldier)

MJgrPlt 1 Rk3 (Grenadier)

MJgrPlt 1 Rk4 (Soldier)

MJgrPlt 1 ItOhjm (AT Soldier) Has Strela

BMP Crew GrpRES_MJgrPlt_BMP MJgrPlt BMP RJ (Squad Leader)

MJgrPlt BMP RvaraJ (Asst. Squad
Leader)

Note: This component requires FDF Mod.

	INTRODUCTION
	WHO IS THE FRAMEWORK FOR?

	SECTION A
	CORE COMPONENTS
	SELECT YOUR ISLAND
	Official Islands
	Community Islands
	ACE Islands

	NAMING YOUR MISSION
	LOADING SCREEN TEXT
	RESPAWN SETTINGS
	CONFIGURABLE PLAYABLE SLOTS
	CONDITIONS SELECTOR
	GEAR SNIPPETS
	AUTOMATIC BODY REMOVAL
	MULTIPLAYER ENDING CONTROLLER
	SAMPLE MARKERS
	DEBUG MODE
	BAS SERVER LOGIC
	BAS F COMMON LOCAL VARIABLES
	BRIEFING FILE TEMPLATE
	README FILE TEMPLATE
	WHAT DO I HAVE NOW?

	SECTION B
	OPTIONAL COMPONENTS
	AI SKILL SELECTOR (COOP VERSION)
	AI SKILL SELECTOR (ATTACK & DEFEND VERSION)
	AUTHORISED CREW CHECK
	AUTHORISED CREW TYPE CHECK
	KEGETYS SPECTATOR SCRIPT FOR ARMA
	Restricting visible sides (Coop missions)
	Restricting visible sides (Attack & Defend missions)

	DYNAMIC VIEW DISTANCE
	MULTI-SIDE BRIEFING FILE TEMPLATE
	Side-specific objectives

	HIDE ENEMY OBJECTIVES
	CASUALTIES CAP
	CASUALTIES CAP (ADVANCED)
	AUTOMATIC BODY REMOVAL (FIFO VERSION)
	CONFIGURABLE PLAYABLE SLOTS (ACE VERSION)

	SECTION C
	SHACKTACTICAL OPTIONAL COMPONENTS
	SHACKTACTICAL: BASELINE MISSION FILE TEMPLATE
	SHACKTACTICAL: GROUP IDS
	What players see in side chat

	SHACKTACTICAL: MARKERS
	What BLUFOR, OPFOR and Resistance players see
	What Civilian players see
	How the markers update if ShackTac_requireRadio is set to 0
	How the markers update if ShackTac_requireRadio is set to 1

	SHACKTACTICAL: MARKERS (ADDON VERSION)
	What BLUFOR, OPFOR and Resistance players see
	What Civilian players see
	How the markers update if ShackTac_requireRadio is set to 0
	How the markers update if ShackTac_requireRadio is set to 1

	SHACKTACTICAL: FIRETEAM MARKERS
	How the markers update

	SHACKTACTICAL: FIRETEAM MARKERS (ADDON VERSION)
	How the markers update

	SHACKTACTICAL: BRIEFING FILE TEMPLATE (COOP VERSION)
	SHACKTACTICAL: BRIEFING FILE TEMPLATE (ATTACK & DEFEND VERSION)
	SHACKTACTICAL: COC CEX SUPPORT
	Free Look Camera Feature

	SHACKTACTICAL: KEVB0'S WOUNDING SCRIPT
	SHACKTACTICAL: KEVB0'S OUTTRO SCRIPT
	Example

	SHACKTACTICAL: KEVB0'S ASSIGN GEAR SCRIPT
	SHACKTACTICAL: SHACKTAC F

	SECTION D
	LDD KYLLIKKI OPTIONAL COMPONENTS
	LDD KYLLIKKI : BASELINE MISSION FILE TEMPLATE (FDF VERSION)
	HQ Platoon
	Jaeger Platoon
	Mechanised Jaeger Platoon

