	Supplement Date 2002 06 24
OFP v.175 rev. 2. 2003 01 12
Notes on

	file

:
.wrp

type

:
objects

command
:

1. Purpose: To position objects on an island, using all three axes and scaling, the related sections from a wrp_file are to edit. The supplement describes on how to declare a model, to setup MicroSoft Direct3D matrices and to place an object to the landscape by entries to the placements list. The supplement is intended as a programmer’s guide on wrp_object items.

2. Requirements: Hex-Editor

3. Procedures:

3.1.
Wrp File Structure

3.2.
Model Declarations

3.3.
Placements List
3.3.1.
Header Entries

3.3.2.
Matrix template to position an object at custom x,y,z coordinates
3.3.3. Direct3D Matrix

3.3.3.1.
Matrix template to scale an object

3.3.3.2.
Matrix template to rotate an object about the x-axis

3.3.3.3.
Matrix template to rotate an object about the y-axis (azimuth)

3.3.3.4.
Matrix template to rotate an object about the z-axis

3.3.3.5.
Matrix template to parallel shift an object in the zy-plane along the y-axis

3.3.3.6.
Matrix template to parallel shift an object in the xy-plane along the y-axis

3.3.3.7.
Matrix template to parallel shift an object in the zy-plane along the z-axis

3.3.3.8.
Matrix template to parallel shift an object in the xy-plane along the x-axis

3.3.3.9. Matrix template to concatenate object axis and scales (mixed matrices)

3.3.4.
General descriptions of Direct3D [3*3] matrix transformations

3.3.4.1.
Rotations and coordinates signs

3.3.4.2.
Calculations in 3D space

3.4.
Model Classes in wrp files

3.4.1. Land Contact

3.4.2.
Scaling

3.5.
Objects and Terrain Heights Data

4.
Appendix
3.1
Wrp File Structure

For working and searching in a wrp_file, open the file with a Hex-Editor

Move to the end of the wrp_file (wrp_files do end with 4 bytes | FF | FF | FF | FF |)

The last sections from a wrp_file, are organized as follows:

(
.

.
| textures list .paa |

 paa / pac / jpg / terrain textures used in world (ascii strings)

.

.

| nn | 00 | 00 | 00 |

counter with the number of models in the models list (4 bytes)

| models list .p3d |

list of p3d models used in world (file paths) (ascii strings)

.

.

| placements list |

objects 7 positions and orientations (56 bytes per placed entry)

.

.

| FF | FF | FF | FF |

bottom of wrp_file (EOF)

	Example 1.: Overview / wrp sections

 …….| eden\ps.paa | 00 | 00 | 01 | 00 | 00 | 00 | data3d\house.p3d | 00 | …m * 56 bytes…| FF | FF | FF | FF |

 textures list counter models list placements list EOF

 If house.p3d is placed at m different locations in the world, then the placements list has m * 56 bytes.

	Example 2. : Declaring a model

From the bottom (EOF) move upwards through the hexdump of the placements list until the first ascii string is reached, showing a .p3d model (see Example 1.),

 …….. | data3d\house.p3d | 00 | ……..
which defines the path to the .p3d model (pbo file), followed by one 00 byte as separator to the next model entry.

Adding for example a new model path custompbo\fence.p3d (e.g. from the addon folder), extends the models list as follows.

…….. | data3d\house.p3d | 00 | custompbo\fence.p3d | 00 | …

To complete the declaration, the counter has to be increased by one. The added model can be accessed by the placements list, now.

 | 01 | 00 | 00 | 00 | (| 02 | 00 | 00 | 00 |

 old counter state new counter state

Note: The wrp file has a data order, named ‘Little Endian’ where LSB is the most left byte and MSB the most right byte (OPRW (WRPO). The counter has a fixed length of 4 bytes integer.

3.2
Model Declarations

An existing .p3d model
,7 has to be declared to the models list first. Also, the counter, which counts the number of models within the .p3d models list, has to be increased by the number of added models.

3.3
Placements List

The placements list describes the positions, the axis orientations and the scales from all island objects
. Also, the placements list contains model indices as well as running ID numbers.

Each object, placed on the island, requires a fixed 56 bytes wide block in the placements list. If there are m objects in the world, then the placements list from the island becomes m * 56 bytes wide. The 56 bytes from each block again are organized, to give finally 14 (4 hex bytes wide) values, which have to be written in the list.

Format from an Object Block in the placements list

 00

	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -

	Object ID

	Model Index

	

	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -

	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -

	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -

	(--------Direct3D Matrix [3*3]--------(
 13

	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -
	- -

	X Position [m]
	Y Position [m]
	Z Position [m]

object ID : Object number shown in the Mission Editor by the “Show Ids” button. Entry can start with any number, in general in ascending order for added objects. Notation: 4 hex byte integer

model index : Pointer to a position within the models list and the model, intended to be used as island object (rem.: the index for the first model in the models list is zero).

Notation: 4 hex byte integer
Direct3D Matrix: Matrix to define the object scale and axis orientations in 3D space.

Notation: 4 hex byte floating point
object position : X, Y, Z position from the object, measured in meters, referred to the islands origin (X, Z left bottom map corner; Y height above sea/water level)

Notation: 4 hex byte floating point

! The XYZ position values inherently do belong to the Direct3D matrix also and are the xyz translation terms, for linear movements.

Follow the given templates and examples, to fill the matrix entries

3.3.1
Header Entries

	Example 3.: Header entries

If there is one object on the island, using a model data3d\house.p3d (Example 2.), then the

running object ID and the model index header entries from the house block are:

| 01 | 00 | 00 | 00 | | 00 | 00 | 00 | 00 |

 object ID model index (house)

The header entries for a second house block, using the same, previous model are:

| 02 | 00 | 00 | 00 | | 00 | 00 | 00 | 00 |

 object ID model index (house)

 The header entries from a third block, placing now a custompbo\fence.p3d (Example 2.) on the island, are:

| 03 | 00 | 00 | 00 | | 01 | 00 | 00 | 00 |

 object ID model index (fence)

	Example 4.: Hexeditor view (one declared model)

The example again shows the appearance from a hexeditor printout (Hackman) with all sections (blue box), related to declare a model (data3d\budova4.p3d) and to place it as an objet to the island. The first four bytes from the blue box is the described counter, followed by the path to the pbo where the model is stored. After the model path and it’s associated 00 separator, the 56 bytes wide placements list follows, starting with the described header entries (Example 3.). The whole wrp_file finally ends with FF FF FF FF.

[image: image1.jpg]

3.3.2.
Matrix template to position an object at custom x, y, z coordinates
The X Y Z entries from the placements list determine the object position, measured in meters and referred to the islands origin, which is in the left, bottom XZ map corner. X is the Easting coordinate and Z is the Northing coordinate. Y is the position above sea or water level.

	X3
	X2
	X1
	X0
	Y3
	Y2
	Y1
	Y0
	Z3
	Z2
	Z1
	Z0

 Easting Height above sea level Northing

X ; Y ; Z : xyz coordinates respectively, measured in meters.

Rem: Y coordinates with values set above the terrain surface are automatically reset by the OFP program back to the terrain level (Example 5). Y coordinates with values set below the terrain level, do bury the object as set (Example 6).

(Land contact depends on the models Named Property classes also (ref.: 3.4.))
Example 5.: (Y set well above terrain level)

	00
	40
	1C
	46
	00
	00
	C8
	42
	00
	00
	7A
	45

Object placed to coordinates X:
00 40 1C 46 = 10000. 0
decimal
[m]

 Y:
00 00 C8 42 = 100.0
decimal
[m]

 Z:
00 00 7A 45 = 4000.0
decimal
[m]

[image: image3.png][image: image4.jpg]

 Height

 North

 Y axis (

 Z axis (
 (N S (

 East

 X axis

 (
Y entry of data3d\budova4.p3d, set to XZ coordinates (map) Desert Island

100 m, will be reset to surface level (10000 / 4000 [m] is in Hi / 68)
Example 6.: (Y set below terrain level)

	00
	40
	1C
	46
	00
	00
	C8
	41
	00
	00
	7A
	45

Height from Example 5. changed to Y: 00 00 C8 41 = 25. 0 decimal [m]

[image: image5.jpg]
	rem.: if a static model is designed in O2 to be placed above the surface line, then the object will appear levitating by the same amount above the terrain surface also! (ref.: 3.4.1. for Land Contact)

(N S (
Y entry of data3d\budova4.p3d, set to

25 m, buries the object

3.3.3.
Direct3D Matrix
An in depth description about Direct3D matrices is given on the MicroSoft pages. The matrices can be setup to rotate, translate or scale an island object.

3.3.3.1.
Matrix template to scale an object :

	Sx3
	Sx2
	Sx1
	Sx0
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	Sy3
	Sy2
	Sy1
	Sy0
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	Sz3
	Sz2
	Sz1
	Sz0

Sx, Sy , Sz : Scaling values respectively in the x, y, z directions, to be filled in the Direct3D [3*3] matrix (ref.: 3.4.2. for exceptions).

Example 7.:

	00
	00
	00
	40
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	40
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	40

scales the object by a factor of 2

 00 00 00 40 = 2 decimal

[image: image6.jpg][image: image7.jpg]
 normal

 * 2

Object : data3d\budova4.p3d

 The OFP program also enlarges the

Object at normal scale (left)

 house icon from the scaled object

Object enlarged by a factor of 2 (right)

 automatically by the same factor.

3.3.3.2.
Matrix template to rotate an object about the x-axis
	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	cos3
	cos2
	cos1
	cos0
	sin3
	sin2
	sin1
	sin0

	00
	00
	00
	00
	-sin3
	-sin2
	-sin1
	-sin0
	cos3
	cos2
	cos1
	cos0

cos ; sin : Trigonometric entries to rotate an object about the x-axis
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term

Example 8.:

	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	B2
	8F
	70
	3F
	43
	1D
	AF
	3E

	00
	00
	00
	00
	43
	1D
	AF
	BE
	B2
	8F
	70
	3F

Tilts the object 20 degrees
43 1D AF 3E = +0.34202
 decimal (sin)

43 1D AF BE = -0.34202
 decimal (-sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image8.jpg]

(N

S (
Viewing direction to East (data3d\budova4.p3d tilted 20°)

3.3.3.3

Matrix template to rotate an object about the y-axis (azimuth)

	cos3
	cos2
	cos1
	cos0
	00
	00
	00
	00
	-sin3
	-sin2
	-sin1
	-sin0

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	sin3
	sin2
	sin1
	sin0
	00
	00
	00
	00
	cos3
	cos2
	cos1
	cos0

cos ; sin : Trigonometric entries to rotate an object about the y-axis
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term

Example 9.:

	B2
	8F
	70
	3F
	00
	00
	00
	00
	43
	1D
	AF
	BE

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	43
	1D
	AF
	3E
	00
	00
	00
	00
	B2
	8F
	70
	3F

Rotates the object 20 degrees
43 1D AF 3E = +0.34202
 decimal (sin)

43 1D AF BE = -0.34202
 decimal (-sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image9.jpg]

 (N

 S (
Viewing direction to East (data3d\budova4.p3d rotated 20°)
[image: image10.jpg]

 N

Map view

3.3.3.4.
Matrix template to rotate an object about the z-axis
	cos3
	cos2
	cos1
	cos0
	sin3
	sin2
	sin1
	sin0
	00
	00
	00
	00

	-sin3
	-sin2
	-sin1
	-sin0
	cos3
	cos2
	cos1
	cos0
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

cos ; sin : Trigonometric entries to rotate an object about the z-axis
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term

Example 10.:

	B2
	8F
	70
	3F
	43
	1D
	AF
	3E
	00
	00
	00
	00

	43
	1D
	AF
	BE
	B2
	8F
	70
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

Tilts the object 20 degrees
43 1D AF 3E = +0.34202
 decimal (sin)

43 1D AF BE = -0.34202
 decimal (-sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image11.jpg]

 (W

 E (
Viewing direction to North (data3d\budova4.p3d tilted 20°)
3.3.3.5.
Matrix template to parallel shift an object in the zy-plane along the y-axis
(forest matrix)

The forest matrix is not a specific named Direct3D matrix and used by the OFP program to align some classes, favorably some forest classes to the terrain slope, where the trees are to be kept in vertical positions. The forest matrix is designed to perform a parallel shift on the objects in the xy and zy plane.

	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	Sin3
	Sin2
	Sin1
	Sin0
	Cos3
	Cos2
	Cos1
	Cos0

cos ; sin : Trigonometric entries to parallel shift an object in the the zy-plane along y
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term. (See 3.3.4.1. angle signs)

Example 11.:

	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	43
	1D
	AF
	3E
	B2
	8F
	70
	3F

Parallel shifts the object –20 deg. 43 1D AF 3E = +0.34202 decimal (sin)

B2 8F 70 3F = +0.93969 decimal (cos)

[image: image12.jpg]
 (N

 S (
Viewing direction to East (data3d\les ctverec pruchozi_t1.p3d shifted –20°)

rem.: The reason why forest triangles were chosen is, that the highest obtainable resolution is defined by three from the four corners of a 50*50 m cell, currently used by the OFP wrp map. Then, the three forest corners can be parallel shifted in the xy and zy plane, to match all orientations from a terrain triangle. Therefore BIS has recommended, to place the corners from the forest triangles always to the corners from a 50*50 m map cell (triangle).

If the parallel shifts do match the slope from the terrain triangle, then the forest has proper land contact at all points without buried or floating trees.

3.3.3.6.
Matrix template to parallel shift an object in the xy-plane along the y-axis
(forest matrix)

	Cos3
	Cos2
	Cos1
	Cos0
	sin3
	sin2
	sin1
	sin0
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

cos ; sin : Trigonometric entries to parallel shift an object in the the xy-plane along y
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term. (See 3.3.4.1. angle signs)

Example 12.:

	B2
	8F
	70
	3F
	43
	1D
	AF
	3E
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	80
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

Parallel shifts the object 20 deg.
43 1D AF 3E = +0.34202
 decimal (sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image13.jpg]
 (W

 E (
Viewing direction to North (data3d\les ctverec pruchozi_t1.p3d shifted 20°)
3.3.3.7.
Matrix template to parallel shift an object in the zy-plane along the z-axis
	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	Cos3
	Cos2
	Cos1
	Cos0
	Sin3
	Sin2
	Sin1
	Sin0

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

cos ; sin : Trigonometric entries to parallel shift an object in the the zy-plane along z
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term. (See 3.3.4.1. angle signs)

Example 13.:

	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	00
	00
	00
	00
	B2
	8F
	70
	3F
	43
	1D
	AF
	3E

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

Parallel shifts the object 20 deg.
43 1D AF 3E = +0.34202
 decimal (sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image14.jpg]
 (N

 S (
Viewing direction to East (data3d\les ctverec pruchozi_t1.p3d shifted 20°)
3.3.3.8.
Matrix template to parallel shift an object in the xy-plane along the x-axis
	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	Sin3
	Sin2
	Sin1
	Sin0
	Cos3
	Cos2
	Cos1
	Cos0
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

cos ; sin : Trigonometric entries to parallel shift an object in the the xy-plane along x
rem: the floating point entry 00 00 80 3F is the decimal number 1, required to be set in the matrix as a fixed term.(See 3.3.4.1. angle signs)

Example 14.:

	00
	00
	80
	3F
	00
	00
	00
	00
	00
	00
	00
	00

	43
	1D
	AF
	3E
	B2
	8F
	70
	3F
	00
	00
	00
	00

	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	80
	3F

Parallel shifts the object –20 deg.
43 1D AF 3E = +0.34202
 decimal (sin)

B2 8F 70 3F = +0.93969 decimal (cos)
[image: image15.jpg]
 (W

 E (
Viewing direction to North (data3d\les ctverec pruchozi_t1.p3d shifted –20°)
3.3.3.9.
Matrix template to concatenate object axis and scales (mixed matrices)

In general, more than one matrix templates are to apply to a model, giving access to any possible orientation in 3D space. To perform this operation, the matrices are to concatenate by multiplying the intended template matrices in proper order about the XYZ axis. The result will be a single Direct3D [3*3] matrix, containing all properties from the individual template matrices.

The multiplication of squared matrices, which have the same number of columns and rows (e.g. [3*3]) takes place by a calculation template.

	A00
	A10
	A20

	A01
	A11
	A21

	A02
	A12
	A22

	B00
	B10
	B20
	C00
	C10
	C20

	B01
	B11
	B21
	C01
	C11
	C21

	B02
	B12
	B22
	C02
	C12
	C22

2nd rotation (

1st rotation ((combined rotation
Multiplying matrix A by matrix B yields matrix C

C = A * B

matrix A :
one of the template matrices from 3.2.4.1. to 3.2.4.8.

matrix B : one of the template matrices from 3.2.4.1. to 3.2.4.8.
matrix C : the concatenated matrix with the properties of matrix

A as well as from matrix B

rem: matrices shown here with column and row indices and not in 4 bytes wide hex notation as before

	General rule to calculate the fields from matrix C

C00 = (A00 * B00) + (A01 * B10) + (A02 * B20)

C01 = (A00 * B01) + (A01 * B11) + (A02 * B21)

C02 = (A00 * B02) + (A01 * B12) + (A02 * B22)

C10 = (A10 * B00) + (A11 * B10) + (A12 * B20)

C11 = (A10 * B01) + (A11 * B11) + (A12 * B21)

C12 = (A10 * B02) + (A11 * B12) + (A12 * B22)

C20 = (A20 * B00) + (A21 * B10) + (A22 * B20)

C21 = (A20 * B01) + (A21 * B11) + (A22 * B21)

C22 = (A20 * B02) + (A21 * B12) + (A22 * B20)

Important! A reversed rotation order from the 1st and the 2nd matrix yields different orientations in the 3D space. For the desired result, the chosen rotation order is of importance!

Example 15.: Combined rotations about the z-axis (1st) and the x-axis (2nd)
[image: image16.jpg][image: image17.jpg][image: image18.jpg]
	1
	0
	0

	0
	cosx
	sinx

	0
	-sinx
	cosx

	cosz
	sinz
	0
	cosz
	cosx*sinz
	sinx*sinz

	-sinz
	cosz
	0
	-sinz
	cosx*cosz
	sinx*cosz

	0
	0
	1
	0
	-sinx
	cosx

(

 (
	1
	0
	0

	0
	0.93969
	0.34202

	0
	- 0.34202
	0.93969

	0.93969
	0.34202
	0
	0.93969
	0.32139
	0.11698

	- 0.34202
	0.93969
	0
	- 0.34202
	0.88302
	0.32139

	0
	0
	1
	0
	- 0.34202
	0.93959

 (
Concatenated matrix (4 byte hex float notation):

	B2
	8F
	70
	3F
	B9
	8D
	A4
	3E
	0D
	92
	EF
	3D

	43
	1D
	AF
	BE
	BF
	0D
	62
	3F
	B9
	8D
	A4
	3E

	00
	00
	00
	00
	43
	1D
	AF
	BE
	B2
	8F
	70
	3F

Tilts the object 20 degrees about the x-axis and 20 degrees about the z-axis

43
1D
AF
3E
=
+0.34202
dec.(sin) 0D
92
EF
3D
=
+0.11698
dec. (sin* sin)

43
1D
AF
BE
=
-0.34202
dec.(-sin) BF
0D
62
3F
=
+0.88302
dec. (cos*cos)

B2
8F
70
3F
=
+0.93969
dec.(cos) B9
8D
A4
3E
=
+0.32139
dec. (cos* sin)
[image: image19.png][image: image20.jpg]

 N

 (NE

 SW (
Viewing direction to South-East The map automatically sets

 (tilt angles: 20° x and 20° z) an object projection

rem.: If more transformations on other rotation axis are to make, then the found combined matrix becomes a root matrix, to be multiplied again with the next matrix.

[image: image21.jpg]
3.3.4

General description of Direct3D [3*3] matrix transformations

Calculating the fields from matrix C (ref.: 3.3.3.9.) is done by linear equations, where one rotation after another is made.
The Direct3D [3*3] matrix, as usual with matrices, describes all possible orientations and scales in 3D space by a more general vectors representation.

For a while, the objects to be transformed are of no concern, only coordinates systems and their XYZ axis are in focus (transforming coordinates systems). Each axis from a coordinates system is regarded as a vector with a length of 1 (unit vector). The direction, where each vector (axis) points, is described by xyz coordinates, related to a reference system.
 The Direct3D matrix contains nothing more, than the orientations from the vectors (axis) X, Y and Z .

General Direct3D [3*3] matrix entries

	Xx
	Xy
	Xz

	Yx
	Yy
	Yz

	Zx
	Zy
	Zz

xyz coordinates from the vector X
xyz coordinates from the vector Y
xyz coordinates from the vector Z
[image: image22.jpg]
Common Cartesian (rectangular) coordinates system. The vectors (axis) X, Y and Z each do have a length of 1.

Direct3D is a left hand axis system (ref.: 3.3.4.1)

	Example 16.: Direct3D matrix from a Cartesian coordinates system (Reference System)

Pointing in the directions of their own (initial) axis, the X, Y and Z vectors only have an entry of 1 in their related Xx, Yy and Zz coordinates fields. The matrix from the Cartesian coordinates (reference) system, actually is a scaling matrix (ref.: 3.3.3.1.) with a scale factor of 1. (e.g. initial (wrp) object orientation state)

 x y z
1

0

0

0

1

0

0

0

1

xyz coordinates from the vector X (axis)

xyz coordinates from the vector Y (axis)

xyz coordinates from the vector Z (axis)

	Example 17.: Rotating the Cartesian coordinates system about the x-axis (ref.: 3.3.3.2)

[image: image23.jpg]
Viewing along the X-axis toward the origin shows the YZ coordinates plane (By this view, the positive Z-axis points to right).
1

0

0

0

+0.93969

+0.34202

0

-0.34202

+0.93969

Rotating the system about the X-axis (+20°) is done by rotating Y to Y’ and rotating Z to Z’. As the x coordinates from X’, Y’ and Z’ do not change with the rotation, only the new y and z coordinates from Y’ and Z’ are to calculate by trigonometric rules.

Yy = +cos20° Yz = + sin20°
Zy = - sin20° Zz = + cos20°

(rem.: Instead of sin and cos, here the Pythagoras can be used also to calculate the yz coordinates 1 = Yy2 +Yz2 ; 1 = Zy2 + Zz2)

[image: image24.jpg]
00

00

80

3F

00

00

00

00

00

00

00

00

00

00

00

00

B2

8F

70

3F

43

1D

AF

3E

00

00

00

00

43

1D

AF

BE

B2

8F

70

3F

43 1D AF 3E = +0.34202 decimal (sin) ref.: Example 8
43 1D AF BE = -0.34202 decimal (-sin)

B2 8F 70 3F = +0.93969 decimal (cos) 00 00 80 3F = 1

3.3.4.1

Rotations and coordinates signs

The Direct3D matrix determines the rotation order about the XYZ axis from a Cartesian coordinates system. The rotation angles are measured clockwise for viewing along the rotation axis toward the origin and having the positive axis direction pointing toward the observer. Direct3D is a Left Hand system.

[image: image25.jpg]
Left Hand Cartesian axis alignment

+X axis direction (points to East
+Y axis direction (points upwards
+Z axis direction (points to North

Rotation axis and coordinates planes

rotation about X-axis (in YZ plane coordinates

rotation about Y-axis (in XZ plane coordinates

rotation about Z-axis (in XY plane coordinates

rem.: a rotation about an axis does affect only the

two remaining coordinates in the related 2D plane.
(ref.: Example 17.)

The signs from the coordinates depend on the selected rotation axis and the view on the related YZ, XZ and YX planes (axis directions).

[image: image26.jpg]
 Rotation about X axis rotation about Y axis rotation about Z axis

rem.: positive angle scale points clockwise (cw)

	[image: image27.png]Example 18.: Angle signs versus coordinates signs
The matrix template 3.3.3.8 shows a parallel shift in the XY-plane along the X-axis. The parallel shift is done by rotating only the Y-axis about the Z-axis in the positive X direction (X-axis points to left). A counterclockwise (ccw) rotation is required to get a positive x coordinate. So, by definition, the shift angle from Example 14 has a negative sign (-20°) but as the Yx coordinate is positive along the X-axis, its matrix entry has a positive sign.

(ccw about z-((43 1D AF 3E = +0.34202 decimal)

(rem.: the Yy coordinate is omitted (focus on the signs))

3.3.4.2.
Calculations in 3D space

To calculate and find the xyz coordinates from the X’Y’Z’ vectors in 3D space, some functions are useful.

a) The Pythagoras for xyz coordinates is 1 =
[image: image2.wmf]2

2

2

z

y

x

+

+

rem.: the vectors X’, Y’, Z’ each do have a length of 1 (the spehere radius)
	Xx2 + Xy2 + Xz2 = 1

	Yx2 + Yy2 + Yz2 = 1

	Zx2 + Zy2 + Zz2 = 1

xyz coordinates function from vector X’
xyz coordinates function from vector Y’
xyz coordinates function from vector Z’
b) With Polar coordinates, a unit vector can be given by an azimuth and an elevation angle. By Direct3D, the azimuth angle (is a rotation (cw) about the Y axis (+Z points to (= 0°). The elevation angle (is a rotation (cw) in a plane through the azimuth (+Y points to (= 0°). (Example: if (= 0° (North), then (is a rotation about the X axis; if (= 90° (East), then (is a rotation about the Z axis). Converting the Polar coordinates to Cartesian coordinates gives:

 x = sin(*sin(y = cos(z = cos(*sin(
xyz coordinates X’
Xx = sin(X*sin(X
Xy = cos(X
Xz = cos(X*sin(X
xyz coordinates Y’
Yx = sin(Y*sin(Y
Yy = cos(Y
Yz = cos(Y*sin(Y

xyz coordinates Z’
Zx = sin(Z*sin(Z
Zy = cos(Z
Zz = cos(Z*sin(Z
rem.: Each vector X’,Y’, Z’ is described by its own related azimuth and elevation angle. Rotations or parallel shifts are determined on how the vectors (axis) X’,Y’, Z’ are positioned one to another, forming finally the transformed coordinates system and Direct3D matrix !
The initial wrp axis state gives the initial Direct3D matrix
[image: image28.jpg]x y z

	1
	0
	0

	0
	1
	0

	0
	0
	1

Initial wrp axis state:

X
(
(= 90° ; (= 90°
 X

Y
(
(= 90° ; (= 00°
 Y
Z
(
(= 00° ; (= 90°
 Z
[image: image29.jpg]
 (
 (
 azimuth
 (

 (plane
 (
Rotation order in Elevation Rotation order in Azimuth Axis rotated by (and (
	Example 19.: Rotation about the X axis by Azimuth and Elevation angles (ref.: 3.3.3.2.)

To compare the methods, again a rotation about the X axis, now on behalf of azimuth and elevation angles. Different is, that the angles are given here in two planes (XZ and Azimuth plane), instead of three planes (XZ, YZ, YX) as shown in Example 17. To get an object rotation about the X axis by +20° means, the azimuth angle (Z for Z’ remains 0°, the azimuth angle (Y for Y’ must have 0° to come in the YZ plane as required for a rotation about the X axis. The elevation angle (Y from Y’ is +20°, the elevation angle (Z from Z’ is +110° (rem.: +110° because the initial axis state (Z is defined by 90°, where counting starts from (not 0° like in Example 17)) ! Calculating the Direct3D matrix entries in terms of azimuth and elevation angles yields:

azimuth angle for Y’ axis: (Y = 0° elevation angle for Y’ axis : (Y = + 20°

azimuth angle for Z’ axis: (Z = 0° elevation angle for Z’ axis : (Z = +110°
Xx = sin(X*sin(X = 1 Xy = cos(X = 0 Xz = cos(X*sin(X = 0
Yx = sin(Y*sin(Y = 0 Yy = cos(Y = +0.93969 Yz = cos(Y*sin(Y = +0.34202

Zx = sin(Z*sin(Z = 0 Zy = cos(Z = - 0.34202 Zz = cos(Z*sin(Z = +0.93969
The results for a rotation about the X-axis are the same then with Example 17
00

00

80

3F

00

00

00

00

00

00

00

00

00

00

00

00

B2

8F

70

3F

43

1D

AF

3E

00

00

00

00

43

1D

AF

BE

B2

8F

70

3F

 3 1D AF 3E = +0.34202 43 1D AF BE = -0.34202 B2 8F 70 3F = +0.93969

Example 20.: Rotation in Azimuth and in Elevation

For completeness, an example for an object orientation of +20° in the azimuth and of +20° in the elevation (rem.: again, angles based on their initial Cartesian axis states).
Azimuth angle for X’ axis: (X = +110° elevation angle for X’ axis : (X = +110°
azimuth angle for Y’ axis: (Y = +110° elevation angle for Y’ axis : (Y = + 20°

azimuth angle for Z’ axis: (Z = + 20° elevation angle for Z’ axis : (Z = +110°
Xx = sin(X*sin(X = +0.88302 Xy = cos(X = - 0.34202 Xz = cos(X*sin(X = - 0.32139
Yx = sin(Y*sin(Y = +0.32139 Yy = cos(Y = +0.93969 Yz = cos(Y*sin(Y = - 0.11698

Zx = sin(Z*sin(Z = +0.32139 Zy = cos(Z = - 0.34202 Zz = cos(Z*sin(Z = +0.88302
The matrix entries for an object orientation of +20° in azimuth and elevation are:

BF

0D

62

3F

43

1D

AF

BE

B9

8D

A4

BE

B9

8D

A4

3E

B2

8F

70

3F

0D

92

EF

BD

B9

8D

A4

3E

43

1D

AF

BE

BF

0D

62

3F

43 1D AF BE = -0.34202 B2 8F 70 3F = +0.93969 0D 92 EF BD = -0.11698

BF 0D 62 3F = +0.88302 B9 8D A4 3E = +0.32139 B9 8D A4 BE = - 0.32139
[image: image30.jpg][image: image31.jpg]data3d\budova4.p3d

viewing direction N

3.4.

Model Classes in wrp files
Some model classes do not allow full access to all Direct3D matrix properties. The effect is, that some models can only be rotated about the Cartesian X,Y and Z axis but not parallel shifted, like forest models. These are not the classes known from the config.cpp, but the classes declared e.g. by O2 in the Named Properties fields. Changing the model class to forest, allows full access to all matrix coordinates. The map icon and the config.cpp do remain unchanged as made by the programmer.

	[image: image32.jpg]
 Named Properties set up with O2 models:

In the O2 menu <Window>, check the Named Properties item, which brings a list box to the O2 desktop (Property Name; Value)

[image: image33.jpg]
Also,

invoke the Geometry LOD
[image: image34.jpg]
Right click in the Named Properties field and select

NEW

[image: image35.jpg]
In the new opened dialog, insert the shown entries. The forest class gives full coordinates access.

[image: image36.jpg]Add the shown additional entries, which will bring a house icon to the map. There are other map icons,

which can be used instead

[image: image37.jpg]
A ready Named Properties box for a house, but with a matrix, usable in all planes

	Example 21.: Changing the Named Properties class from an existing ODOL model

If all possible transformations from an existing ODOL model must be made available, then in many cases and if an entry exists at all, the class can be changed within the models p3d file on behalf of a Hex editor in searching the ascii string class. The example shows a Hex editor printout from the related data3d/budova4.p3d file section, where the entry house for instance can be replaced by the entry forest and then be saved under a new custom name.

[image: image38.jpg]

3.4.1.
 Land Contact

The land contact properties from house and forest class objects are different.

The rules for land contact, here apply to the Y axis.

House:
If the programmer decides to put the surface level value (TY) in the height field from a class house object (ref.: 3.3.2), then the object will be buried ½ of its actual (y) extend into the ground. An offset must be made to bring the house up to the surface as normal.
 (ref.: 3.4.2. special cases for land contact with scaling (SY))

YOFFSET = 0.5 * (MY + LY) * SY

MY : Model height (y - extent)
[m]

LY : Model offset from surface
[m]

SY : Scale factor

The value to be put in the height position field Y of the matrix, is:

Y = TY + YOFFSET

TY : Actual surface/terrain level
[m]

Y : Object height position
 [m]

[image: image39.jpg]The YOFFSET value is the maximum, an object can be shifted upwards. As seen by the function, the bottom of an object having no surface offset (LY = 0) cannot be shifted higher then the terrain level. Otherwise, the object can be buried into the ground as far as to become invisible. With class house, the Geometry LOD and LandContact LOD do have no influence on land contact and can be left theoretically.

 Shift range for a model without a surface offset (LY = 0)

 (initial state Y = TY (model ½ buried to ground (left fig.))

In general and in the most easiest case, the bottom of a house, constructed with O2, is set to the O2 surface line (LY = 0). But in practice, the models do extend for a certain amount below the surface (cellar), which is necessary to compensate none flat surfaces. Therefore, one has to examine the model for the maximum terrain slope, the model can be used with. Doors are a reference. A lookup table is useful, containing fixed offset values, where the model textures do let assume the actual surface line.

Offset values are useful also, if a model is intended to levitate above the surface (e.g. special coastal or mountain formations, not obtainable with the wrp_TY data set).

To get an offset, the model bottom must be constructed in O2 above or below the O2 surface line. Again, the class house offset by itself does not require a LandContact LOD.

[image: image40.jpg]

 Shift range for a model with an offset (LY (0)

 (initial state Y = TY (left fig.) ; set by Y = TY + 0.5 * (MY + LY) * SY (right fig.))

The YOFFSET value is the maximum, an object can be shifted upwards. As seen by the function, the bottom of an object having an offset (LY (0) cannot be shifted higher than LY*SY above the terrain level. Otherwise, the object can be buried into the ground as far as to become invisible.

Shift Range Scale: The shift range scale from class house is linear (changing the position height entry (Y) by 1 m, yields a 1 m height shift on the island. This holds not necessarily true for other classes, like the forest class).
Forest:
In contrary to class house, the class forest has a reversed offset/shift scale. Increasing the YOFFSET values lets the object sink, where decreasing the YOFFSET values lets the object rise
. Also, the shift/offset ((Y) from a class forest obect is based on another function. For shifting an object, the height MY does not appear in the function and has no effect on the shift. With forest class objects, proper land contact can be made by standard methods, which do not require special programming efforts.
Standard land contact methods:

a) If a scale factor of 1 in the Y axis direction (SY) is chosen, then any entry for Y (with and without a LandContact LOD), lets the object land on the surface as made with O2. With class forest objects, this method is a standard one. But changes of (LY) can only be done within O2 and by changing the model.

b) If the wrp terrain level (TY) is chosen as entry for the height position (Y = TY) (with and without a LandContact LOD), then also a scale factor (SY) can be used to scale the models (LY) and (MY) parameters. But, changes of (LY) can only be done within O2 and by changing the model.

c) Other scales than 1 with offsets from the initial position (Y=TY) do require rescaling and repositioning as described later. The advantage is, models can be shifted without changing the model, directly by the wrp entries.

Case a) and b) may let an object become invisible for some aspect angles 15. Scales along the X and Z axis do have no significant constraints (ref.: 3.4.2.)).

Example 22.: A house model, built with O2, for instance has a height (MY) of 2m and a distance between the bottom of the house and the LandContact LOD vertices (LY) of 3m (levitating above wrp terrain level). The house object is intended to be scaled on the island by a factor of 3 (SY) along the Y axis. The terrain level is 26.75m (TY).Using TY as entry (case b)) for the height position (Y = 26.75 m) yields a class forest house object, having a height of 6m, levitating 9m above the ground.

MY : Model height (y - extent)

 [m]

LY : Distance between model bottom and LandContact LOD vertices
 [m]

SY : Scale factor along the Y axis

Calculating the position value Y: Having a closer look, class forest has a reversed Y axis (shift scale) direction, measured from a virtual zero line. The shift scale is a function from the scale factor (SY). Shifting a class forest object on the island by 1m away from its initial state, equals not a change of 1m from the height position entry. The distance between the virtual zero line and the wrp terrain level (TY) is a function from (SY) as well.

Distance wrp-terrain-level to virtual-zero-line = 2 * LY * SY
Transforming the shift/offset from the wrp scale to the virtual shift scale:

YOFFSET = - (Y * 1 / (SY – 1)
rem.: scale direction inverted by (- (Y)

(Y : intended object offset on the island, away from the initial position TY
[m]

 (referred to the wrp scale)

YOFFSET : transformed offset value, used for the height position entry 16
 (referred to the shift scale)

The value to be put in the height position field Y in the Direct3D matrix, is:

Y = TY + YOFFSET

TY : Actual surface/terrain level
[m]

Y : Object height position entry
[m]

rem.: TY is assumed to be the initial value from where the offset is counted from.

The term 1/(SY -1) converges to infinite for SY converging against 1, which in general is not trapped by a program and causing a division by 0 error. The program has to take provisions, to exit the subroutine if close to 1 (SY = 1 (not valid). In other words, the term 1/(SY –1) is a factor, which squeeze or stretch the forest scale against the wrp scale (measured in [m]) for scale factors (SY) other then 1. For scale factors close to 1, YOFFSET must be made bigger and bigger to shift the object at all.
Example 23: An object is to shift -0.5 [m] downwards ((Y). The scale factor (SY) is 3. The initial object position on terrain level (TY) is 26.75 [m]. So, a value of 0.25 must be added to TY, which yields a new Y value of 27.00 [m], shifting the object -0.5 [m] downwards from its previous position.

Edited by ArcticPaw

 01 / 12 / 2003

--- to be continued ---

3.4.2.
 Scaling
3.5.

Objects and Terrain Heights Data

4.

 APPENDIX

A.

 Exercise (Placing a house to Desert Island)

1.) For the reason, to avoid a special config.cpp, the original intro.wrp file will be used for the exercise.

 Therefore first make a copy from the original intro.wrp file (<worlds> folder in OFP) and

 ! safe the original intro.wrp file to a secure location !
2.) The objective is:
 making the model helfenburk accessible for usage on Desert Island by,
a) placing the helfenburk model at position X = 10000 [m] , Z = 40000 [m]

b) scaling the object helfenburk by a factor of * 2.

c) tilting the object off from the vertical axis in the Cartesian YZ plane by +20°.

d) matching the door to be on terrain level (door on the northern side).

e) furnishing the helfenburk object with the map legend , lighthouse .

3.) Procedure:

� To make a printout from the supplement is recommended !

� If a Hex-Editor is not yet available, download either Hackman or Hexworks for free from the Internet.

� The ascii .paa texture paths do follow successively one on another, separated by two 00 byte.

� The ascii .p3d model paths do follow successively one on another, separated by one 00 byte.

� The hexframes have a fixed length of 56 bytes and do follow successively without separators.

� Existing within a pbo like dta\data3d.pbo or a custom addon pbo ; (the path to the pbo where the p3d is stored)

� A model is regarded as a .p3d file, not yet related to an island. It becomes an object, if placed on an island. The advantage is, one can select various models from the list for one object, without changing the related placements list entries; just only the model index.

� The running number can be made visible in the Mission Editor by the button “Show IDs”. This can be used to find the objects in the placements list by the hexeditor’s search function, fast.

� The original Direct3D matrix has a [4*4] scheme. Wrp_files do use a reduced [3*3] or a [3*4] scheme if one regards the XYZ position values as part of the matrix. With a [3*3] scheme, scaling and rotations about all 3D space axis can be made.

� Not only the scale but also a projection from the object is set automatically by the OFP program.

� The pointing direction from each vector has to be regarded independently from each other vector. Therefore each vector (X, Y and Z) requires three coordinates (xyz) in 3D space. The transformed axis must not be necessarily arranged in a rectangular order. For example, the forest matrices do have none rectangular axis.

� In a right hand system the +Z axis direction would point to South. The X and Y axis do keep their directions.

� In respect, that Direct3D is a usual vectors matrix, the programmer will chose other known mathematical methods also, to calculate the matrix in dependence of the objects and programming requirements. As the matrices for wrp objects are to setup only once, the method is less critical, concerning the processing speed.

� If the height value from a class house object is well above the terrain level, then the OFP program will fit the object down to the ground level automatically (ref.:3.3.2.). This is the most comfortable custom programming procedure (rem.: effects on processing speed not regarded).

� With shifts/offsets ((Y), the parameters from a forest class object can be changed only within limits. The effect is, that the object disappears by larger viewing angles. The visibility reduces with increasing levitating offsets toward the zero line (0). Levitating offsets with forest classes are useful for some very rare special effects (natural optical effects (simulating total reflections on inversions)).

PAGE
1

_1102781598.unknown

